About stdlib...
We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.
The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.
When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.
To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!
Multiply a vector
x
by a constantalpha
and add the result toy
.
npm install @stdlib/blas-base-daxpy
var daxpy = require( '@stdlib/blas-base-daxpy' );
Multiplies a vector x
by a constant alpha
and adds the result to y
.
var Float64Array = require( '@stdlib/array-float64' );
var x = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0 ] );
var y = new Float64Array( [ 1.0, 1.0, 1.0, 1.0, 1.0 ] );
var alpha = 5.0;
daxpy( x.length, alpha, x, 1, y, 1 );
// y => <Float64Array>[ 6.0, 11.0, 16.0, 21.0, 26.0 ]
The function has the following parameters:
- N: number of indexed elements.
- alpha: scalar constant.
-
x: input
Float64Array
. -
strideX: index increment for
x
. -
y: input
Float64Array
. -
strideY: index increment for
y
.
The N
and stride parameters determine which elements in the strided arrays are accessed at runtime. For example, to multiply every other value in x
by alpha
and add the result to the first N
elements of y
in reverse order,
var Float64Array = require( '@stdlib/array-float64' );
var x = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] );
var y = new Float64Array( [ 1.0, 1.0, 1.0, 1.0, 1.0, 1.0 ] );
var alpha = 5.0;
daxpy( 3, alpha, x, 2, y, -1 );
// y => <Float64Array>[ 26.0, 16.0, 6.0, 1.0, 1.0, 1.0 ]
Note that indexing is relative to the first index. To introduce an offset, use typed array
views.
var Float64Array = require( '@stdlib/array-float64' );
// Initial arrays...
var x0 = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] );
var y0 = new Float64Array( [ 7.0, 8.0, 9.0, 10.0, 11.0, 12.0 ] );
// Create offset views...
var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var y1 = new Float64Array( y0.buffer, y0.BYTES_PER_ELEMENT*3 ); // start at 4th element
daxpy( 3, 5.0, x1, -2, y1, 1 );
// y0 => <Float64Array>[ 7.0, 8.0, 9.0, 40.0, 31.0, 22.0 ]
Multiplies a vector x
by a constant alpha
and adds the result to y
using alternative indexing semantics.
var Float64Array = require( '@stdlib/array-float64' );
var x = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0 ] );
var y = new Float64Array( [ 1.0, 1.0, 1.0, 1.0, 1.0 ] );
var alpha = 5.0;
daxpy.ndarray( x.length, alpha, x, 1, 0, y, 1, 0 );
// y => <Float64Array>[ 6.0, 11.0, 16.0, 21.0, 26.0 ]
The function has the following additional parameters:
-
offsetX: starting index for
x
. -
offsetY: starting index for
y
.
While typed array
views mandate a view offset based on the underlying buffer, the offset parameters support indexing semantics based on starting indices. For example, to multiply every other value in x
by a constant alpha
starting from the second value and add to the last N
elements in y
where x[i] -> y[n]
, x[i+2] -> y[n-1]
,...,
var Float64Array = require( '@stdlib/array-float64' );
var x = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] );
var y = new Float64Array( [ 7.0, 8.0, 9.0, 10.0, 11.0, 12.0 ] );
var alpha = 5.0;
daxpy.ndarray( 3, alpha, x, 2, 1, y, -1, y.length-1 );
// y => <Float64Array>[ 7.0, 8.0, 9.0, 40.0, 31.0, 22.0 ]
var discreteUniform = require( '@stdlib/random-array-discrete-uniform' );
var daxpy = require( '@stdlib/blas-base-daxpy' );
var opts = {
'dtype': 'float64'
};
var x = discreteUniform( 10, 0, 100, opts );
console.log( x );
var y = discreteUniform( x.length, 0, 10, opts );
console.log( y );
daxpy.ndarray( x.length, 5.0, x, 1, 0, y, -1, y.length-1 );
console.log( y );
#include "stdlib/blas/base/daxpy.h"
Multiplies a vector X
by a constant and adds the result to Y
.
const double x[] = { 1.0, 2.0, 3.0, 4.0 };
double y[] = { 0.0, 0.0, 0.0, 0.0 };
c_daxpy( 4, 5.0, x, 1, y, 1 );
The function accepts the following arguments:
-
N:
[in] CBLAS_INT
number of indexed elements. -
alpha:
[in] double
scalar constant. -
X:
[in] double*
input array. -
strideX:
[in] CBLAS_INT
index increment forX
. -
Y:
[inout] double*
output array. -
strideY:
[in CBLAS_INT
index increment forY
.
void c_daxpy( const CBLAS_INT N, const double alpha, const double *X, const CBLAS_INT strideX, double *Y, const CBLAS_INT strideY );
#include "stdlib/blas/base/daxpy.h"
#include <stdio.h>
int main( void ) {
// Create strided arrays:
const double x[] = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 };
double y[] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 };
// Specify the number of elements:
const int N = 4;
// Specify stride lengths:
const int strideX = 2;
const int strideY = -2;
// Compute `a*x + y`:
c_daxpy( N, 5.0, x, strideX, y, strideY );
// Print the result:
for ( int i = 0; i < 8; i++ ) {
printf( "y[ %i ] = %lf\n", i, y[ i ] );
}
}
-
@stdlib/blas-base/dasum
: compute the sum of absolute values (L1 norm). -
@stdlib/blas-base/gaxpy
: multiply x by a constant and add the result to y. -
@stdlib/blas-base/saxpy
: multiply a vector x by a constant and add the result to y.
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
See LICENSE.
Copyright © 2016-2024. The Stdlib Authors.