About stdlib...
We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.
The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.
When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.
To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!
Apply a plane rotation.
This BLAS level 1 routine applies a real plane rotation to real single-precision floating-point vectors. The plane rotation is applied to N
points, where the points to be rotated are contained in vectors x
and y
and where the cosine and sine of the angle of rotation are c
and s
, respectively. The operation is as follows:
where x_i
and y_i
are the individual elements on which the rotation is applied.
npm install @stdlib/blas-base-srot
var srot = require( '@stdlib/blas-base-srot' );
Applies a plane rotation.
var Float32Array = require( '@stdlib/array-float32' );
var x = new Float32Array( [ 1.0, 2.0, 3.0, 4.0, 5.0 ] );
var y = new Float32Array( [ 6.0, 7.0, 8.0, 9.0, 10.0 ] );
srot( x.length, x, 1, y, 1, 0.8, 0.6 );
// x => <Float32Array>[ ~4.4, ~5.8, ~7.2, ~8.6, 10.0 ]
// y => <Float32Array>[ ~4.2, ~4.4, ~4.6, ~4.8, 5.0 ]
The function has the following parameters:
- N: number of indexed elements.
-
x: first input
Float32Array
. -
strideX: index increment for
x
. -
y: second input
Float32Array
. -
strideY: index increment for
y
. - c: cosine of the angle of rotation.
- s: sine of the angle of rotation.
The N
and stride parameters determine how values in the strided arrays are accessed at runtime. For example, to apply a plane rotation to every other element,
var Float32Array = require( '@stdlib/array-float32' );
var x = new Float32Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] );
var y = new Float32Array( [ 7.0, 8.0, 9.0, 10.0, 11.0, 12.0 ] );
srot( 3, x, 2, y, 2, 0.8, 0.6 );
// x => <Float32Array>[ ~5.0, 2.0, ~7.8, 4.0, ~10.6, 6.0 ]
// y => <Float32Array>[ 5.0, 8.0, ~5.4, 10.0, ~5.8, 12.0 ]
Note that indexing is relative to the first index. To introduce an offset, use typed array
views.
var Float32Array = require( '@stdlib/array-float32' );
// Initial arrays...
var x0 = new Float32Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] );
var y0 = new Float32Array( [ 7.0, 8.0, 9.0, 10.0, 11.0, 12.0 ] );
// Create offset views...
var x1 = new Float32Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var y1 = new Float32Array( y0.buffer, y0.BYTES_PER_ELEMENT*3 ); // start at 4th element
srot( 3, x1, 1, y1, 1, 0.8, 0.6 );
// x0 => <Float32Array>[ 1.0, ~7.6, 9.0, ~10.4, 5.0, 6.0 ]
// y0 => <Float32Array>[ 7.0, 8.0, 9.0, ~6.8, 7.0, ~7.2 ]
Applies a plane rotation using alternative indexing semantics.
var Float32Array = require( '@stdlib/array-float32' );
var x = new Float32Array( [ 1.0, 2.0, 3.0, 4.0, 5.0 ] );
var y = new Float32Array( [ 6.0, 7.0, 8.0, 9.0, 10.0 ] );
srot.ndarray( 4, x, 1, 1, y, 1, 1, 0.8, 0.6 );
// x => <Float32Array>[ 1.0, ~5.8, ~7.2, ~8.6, 10.0 ]
// y => <Float32Array>[ 6.0, ~4.4, ~4.6, ~4.8, 5.0 ]
The function has the following additional parameters:
-
offsetX: starting index for
x
. -
offsetY: starting index for
y
.
While typed array
views mandate a view offset based on the underlying buffer, the offset parameters support indexing semantics based on starting indices. For example, to apply a plane rotation to every other element starting from third element,...,
var Float32Array = require( '@stdlib/array-float32' );
var x = new Float32Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] );
var y = new Float32Array( [ 7.0, 8.0, 9.0, 10.0, 11.0, 12.0 ] );
srot.ndarray( 2, x, 2, 2, y, 2, 2, 0.8, 0.6 );
// x => <Float32Array>[ 1.0, 2.0, ~7.8, 4.0, ~10.6, 6.0 ]
// y => <Float32Array>[ 7.0, 8.0, ~5.4, 10.0, ~5.8, 12.0 ]
var discreteUniform = require( '@stdlib/random-array-discrete-uniform' );
var srot = require( '@stdlib/blas-base-srot' );
var opts = {
'dtype': 'float32'
};
var x = discreteUniform( 10, 0, 500, opts );
console.log( x );
var y = discreteUniform( x.length, 0, 255, opts );
console.log( y );
// Applies a plane rotation :
srot( x.length, x, 1, y, 1, 0.8, 0.6 );
console.log( x );
console.log( y );
#include "stdlib/blas/base/srot.h"
Applies a plane rotation.
float x[] = { 1.0f, 2.0f, 3.0f, 4.0f, 5.0f };
float y[] = { 6.0f, 7.0f, 8.0f, 9.0f, 10.0f };
c_drot( 5, x, 1, y, 1, 0.8f, 0.6f );
The function accepts the following arguments:
-
N:
[in] CBLAS_INT
number of indexed elements. -
X:
[inout] float*
first input array. -
strideX:
[in] CBLAS_INT
index increment forX
. -
Y:
[inout] float*
second input array. -
strideY:
[in] CBLAS_INT
index increment forY
. -
c:
[in] float
cosine of the angle of rotation. -
s:
[in] float
sine of the angle of rotation.
void c_drot( const CBLAS_INT N, float *X, const CBLAS_INT strideX, float *Y, const CBLAS_INT strideY, const float c, const float s );
#include "stdlib/blas/base/drot.h"
#include <stdio.h>
int main( void ) {
// Create strided arrays:
float x[] = { 1.0f, 2.0f, 3.0f, 4.0f, 5.0f };
float y[] = { 6.0f, 7.0f, 8.0f, 9.0f, 10.0f };
// Specify the number of elements:
const int N = 5;
// Specify stride lengths:
const int strideX = 1;
const int strideY = 1;
// Specify angle of rotation:
const float c = 0.8f;
const float s = 0.6f;
// Apply plane rotation:
c_drot( N, x, strideX, y, strideY, c, s );
// Print the result:
for ( int i = 0; i < 5; i++ ) {
printf( "x[ %i ] = %f, y[ %i ] = %f\n", i, x[ i ], i, y[ i ] );
}
}
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
See LICENSE.
Copyright © 2016-2024. The Stdlib Authors.