@stdlib/blas-ext-base-dcusumkbn
TypeScript icon, indicating that this package has built-in type declarations

0.2.2 • Public • Published
About stdlib...

We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.

The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.

When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.

To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!

dcusumkbn

NPM version Build Status Coverage Status

Calculate the cumulative sum of double-precision floating-point strided array elements using an improved Kahan–Babuška algorithm.

Installation

npm install @stdlib/blas-ext-base-dcusumkbn

Usage

var dcusumkbn = require( '@stdlib/blas-ext-base-dcusumkbn' );

dcusumkbn( N, sum, x, strideX, y, strideY )

Computes the cumulative sum of double-precision floating-point strided array elements using an improved Kahan–Babuška algorithm.

var Float64Array = require( '@stdlib/array-float64' );

var x = new Float64Array( [ 1.0, -2.0, 2.0 ] );
var y = new Float64Array( x.length );

dcusumkbn( x.length, 0.0, x, 1, y, 1 );
// y => <Float64Array>[ 1.0, -1.0, 1.0 ]

x = new Float64Array( [ 1.0, -2.0, 2.0 ] );
y = new Float64Array( x.length );

dcusumkbn( x.length, 10.0, x, 1, y, 1 );
// y => <Float64Array>[ 11.0, 9.0, 11.0 ]

The function has the following parameters:

  • N: number of indexed elements.
  • sum: initial sum.
  • x: input Float64Array.
  • strideX: index increment for x.
  • y: output Float64Array.
  • strideY: index increment for y.

The N and stride parameters determine which elements in the strided arrays are accessed at runtime. For example, to compute the cumulative sum of every other element in the strided input array,

var Float64Array = require( '@stdlib/array-float64' );

var x = new Float64Array( [ 1.0, 2.0, 2.0, -7.0, -2.0, 3.0, 4.0, 2.0 ] );
var y = new Float64Array( x.length );

var v = dcusumkbn( 4, 0.0, x, 2, y, 1 );
// y => <Float64Array>[ 1.0, 3.0, 1.0, 5.0, 0.0, 0.0, 0.0, 0.0 ]

Note that indexing is relative to the first index. To introduce an offset, use typed array views.

var Float64Array = require( '@stdlib/array-float64' );

// Initial arrays...
var x0 = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
var y0 = new Float64Array( x0.length );

// Create offset views...
var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var y1 = new Float64Array( y0.buffer, y0.BYTES_PER_ELEMENT*3 ); // start at 4th element

dcusumkbn( 4, 0.0, x1, -2, y1, 1 );
// y0 => <Float64Array>[ 0.0, 0.0, 0.0, 4.0, 6.0, 4.0, 5.0, 0.0 ]

dcusumkbn.ndarray( N, sum, x, strideX, offsetX, y, strideY, offsetY )

Computes the cumulative sum of double-precision floating-point strided array elements using an improved Kahan–Babuška algorithm and alternative indexing semantics.

var Float64Array = require( '@stdlib/array-float64' );

var x = new Float64Array( [ 1.0, -2.0, 2.0 ] );
var y = new Float64Array( x.length );

dcusumkbn.ndarray( x.length, 0.0, x, 1, 0, y, 1, 0 );
// y => <Float64Array>[ 1.0, -1.0, 1.0 ]

The function has the following additional parameters:

  • offsetX: starting index for x.
  • offsetY: starting index for y.

While typed array views mandate a view offset based on the underlying buffer, offsetX and offsetY parameters support indexing semantics based on a starting indices. For example, to calculate the cumulative sum of every other value in the strided input array starting from the second value and to store in the last N elements of the strided output array starting from the last element

var Float64Array = require( '@stdlib/array-float64' );

var x = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
var y = new Float64Array( x.length );

dcusumkbn.ndarray( 4, 0.0, x, 2, 1, y, -1, y.length-1 );
// y => <Float64Array>[ 0.0, 0.0, 0.0, 0.0, 5.0, 1.0, -1.0, 1.0 ]

Notes

  • If N <= 0, both functions return y unchanged.

Examples

var discreteUniform = require( '@stdlib/random-base-discrete-uniform' ).factory;
var filledarrayBy = require( '@stdlib/array-filled-by' );
var Float64Array = require( '@stdlib/array-float64' );
var dcusumkbn = require( '@stdlib/blas-ext-base-dcusumkbn' );

var x = filledarrayBy( 10, 'float64', discreteUniform( 0, 100 ) );
var y = new Float64Array( x.length );

console.log( x );
console.log( y );

dcusumkbn( x.length, 0.0, x, 1, y, -1 );
console.log( y );

References

  • Neumaier, Arnold. 1974. "Rounding Error Analysis of Some Methods for Summing Finite Sums." Zeitschrift Für Angewandte Mathematik Und Mechanik 54 (1): 39–51. doi:10.1002/zamm.19740540106.

See Also


Notice

This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.

For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.

Community

Chat


License

See LICENSE.

Copyright

Copyright © 2016-2024. The Stdlib Authors.

Package Sidebar

Install

npm i @stdlib/blas-ext-base-dcusumkbn

Homepage

stdlib.io

Weekly Downloads

9

Version

0.2.2

License

Apache-2.0

Unpacked Size

57.1 kB

Total Files

20

Last publish

Collaborators

  • stdlib-bot
  • kgryte
  • planeshifter
  • rreusser