About stdlib...
We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.
The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.
When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.
To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!
Beta distribution quantile function.
The quantile function for a beta random variable is
for 0 <= p <= 1
, where alpha > 0
is the first shape parameter and beta > 0
is the second shape parameter and F(x;alpha,beta)
denotes the cumulative distribution function of a beta random variable with parameters alpha
and beta
.
npm install @stdlib/stats-base-dists-beta-quantile
var quantile = require( '@stdlib/stats-base-dists-beta-quantile' );
Evaluates the quantile function for a beta distribution with parameters alpha
(first shape parameter) and beta
(second shape parameter).
var y = quantile( 0.8, 2.0, 1.0 );
// returns ~0.894
y = quantile( 0.5, 4.0, 2.0 );
// returns ~0.686
If provided a probability p
outside the interval [0,1]
, the function returns NaN
.
var y = quantile( 1.9, 1.0, 1.0 );
// returns NaN
y = quantile( -0.1, 1.0, 1.0 );
// returns NaN
If provided NaN
as any argument, the function returns NaN
.
var y = quantile( NaN, 1.0, 1.0 );
// returns NaN
y = quantile( 0.5, NaN, 1.0 );
// returns NaN
y = quantile( 0.5, 1.0, NaN );
// returns NaN
If provided alpha <= 0
, the function returns NaN
.
var y = quantile( 0.4, -1.0, 1.0 );
// returns NaN
y = quantile( 0.4, 0.0, 1.0 );
// returns NaN
If provided beta <= 0
, the function returns NaN
.
var y = quantile( 0.4, 1.0, -1.0 );
// returns NaN
y = quantile( 0.4, 1.0, 0.0 );
// returns NaN
Returns a function for evaluating the quantile function of a beta distribution with parameters alpha
(first shape parameter) and beta
(second shape parameter).
var myquantile = quantile.factory( 2.0, 2.0 );
var y = myquantile( 0.8 );
// returns ~0.713
y = myquantile( 0.4 );
// returns ~0.433
var randu = require( '@stdlib/random-base-randu' );
var EPS = require( '@stdlib/constants-float64-eps' );
var quantile = require( '@stdlib/stats-base-dists-beta-quantile' );
var alpha;
var beta;
var p;
var y;
var i;
for ( i = 0; i < 10; i++ ) {
p = randu();
alpha = ( randu()*5.0 ) + EPS;
beta = ( randu()*5.0 ) + EPS;
y = quantile( p, alpha, beta );
console.log( 'p: %d, α: %d, β: %d, Q(p;α,β): %d', p.toFixed( 4 ), alpha.toFixed( 4 ), beta.toFixed( 4 ), y.toFixed( 4 ) );
}
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
See LICENSE.
Copyright © 2016-2024. The Stdlib Authors.