js-libp2p-crypto
Crypto primitives for libp2p in JavaScript
This repo contains the JavaScript implementation of the crypto primitives needed for libp2p. This is based on this go implementation.
Lead Maintainer
Table of Contents
- Install
-
API
-
crypto.hmac
-
crypto.aes
-
keys
generateKeyPair(type, bits, callback)
generateEphemeralKeyPair(curve, callback)
keyStretcher(cipherType, hashType, secret, callback)
marshalPublicKey(key[, type], callback)
unmarshalPublicKey(buf)
marshalPrivateKey(key[, type])
unmarshalPrivateKey(buf, callback)
import(pem, password, callback)
randomBytes(number)
pbkdf2(password, salt, iterations, keySize, hash)
-
- Contribute
- License
Install
npm install --save libp2p-crypto
API
crypto.aes
Expoes an interface to AES encryption (formerly Rijndael), as defined in U.S. Federal Information Processing Standards Publication 197.
This uses CTR
mode.
crypto.aes.create(key, iv, callback)
-
key: Buffer
The key, if length16
thenAES 128
is used. For length32
,AES 256
is used. -
iv: Buffer
Must have length16
. callback: Function
decrypt(data, callback)
data: Buffer
callback: Function
encrypt(data, callback)
data: Buffer
callback: Function
var crypto = require('libp2p-crypto')
// Setting up Key and IV
// A 16 bytes array, 128 Bits, AES-128 is chosen
var key128 = Buffer.from([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15])
// A 16 bytes array, 128 Bits,
var IV = Buffer.from([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15])
async function main () {
let decryptedMessage = 'Hello, world!'
let encryptedMessage
// Encrypting
await crypto.aes.create(key128, IV, (err, cipher) => {
if (!err) {
cipher.encrypt(Buffer.from(decryptedMessage), (err, encryptedBuffer) => {
if (!err) {
console.log(encryptedBuffer)
// prints: <Buffer 42 f1 67 d9 2e 42 d0 32 9e b1 f8 3c>
encryptedMessage = encryptedBuffer
}
})
}
})
// Decrypting
await crypto.aes.create(key128, IV, (err, cipher) => {
if (!err) {
cipher.decrypt(encryptedMessage, (err, decryptedBuffer) => {
if (!err) {
console.log(decryptedBuffer)
// prints: <Buffer 42 f1 67 d9 2e 42 d0 32 9e b1 f8 3c>
console.log(decryptedBuffer.toString('utf-8'))
// prints: Hello, world!
}
})
}
})
}
main()
crypto.hmac
Exposes an interface to the Keyed-Hash Message Authentication Code (HMAC) as defined in U.S. Federal Information Processing Standards Publication 198. An HMAC is a cryptographic hash that uses a key to sign a message. The receiver verifies the hash by recomputing it using the same key.
crypto.hmac.create(hash, secret, callback)
hash: String
secret: Buffer
callback: Function
digest(data, callback)
data: Buffer
callback: Function
Example:
var crypto = require('libp2p-crypto')
let hash = 'SHA1' // 'SHA256' || 'SHA512'
crypto.hmac.create(hash, Buffer.from('secret'), (err, hmac) => {
if (!err) {
hmac.digest(Buffer.from('hello world'), (err, sig) => {
if (!err) {
console.log(sig)
}
})
}
})
crypto.keys
Supported Key Types
The generateKeyPair
, marshalPublicKey
, and marshalPrivateKey
functions accept a string type
argument.
Currently the 'RSA'
and 'ed25519'
types are supported, although ed25519 keys support only signing and verification of messages. For encryption / decryption support, RSA keys should be used.
Installing the libp2p-crypto-secp256k1 module adds support for the 'secp256k1'
type, which supports ECDSA signatures using the secp256k1 elliptic curve popularized by Bitcoin. This module is not installed by default, and should be explicitly depended on if your project requires secp256k1 support.
crypto.keys.generateKeyPair(type, bits, callback)
-
type: String
, see Supported Key Types above. -
bits: Number
Minimum of 1024 callback: Function
Generates a keypair of the given type and bitsize.
crypto.keys.generateEphemeralKeyPair(curve, callback)
-
curve: String
, one of'P-256'
,'P-384'
,'P-521'
is currently supported callback: Function
Generates an ephemeral public key and returns a function that will compute the shared secret key.
Focuses only on ECDH now, but can be made more general in the future.
Calls back with an object of the form
{
key: Buffer,
genSharedKey: Function
}
crypto.keys.keyStretcher(cipherType, hashType, secret, callback)
-
cipherType: String
, one of'AES-128'
,'AES-256'
,'Blowfish'
-
hashType: String
, one of'SHA1'
,SHA256
,SHA512
secret: Buffer
callback: Function
Generates a set of keys for each party by stretching the shared key.
Calls back with an object of the form:
{
k1: {
iv: Buffer,
cipherKey: Buffer,
macKey: Buffer
},
k2: {
iv: Buffer,
cipherKey: Buffer,
macKey: Buffer
}
}
crypto.keys.marshalPublicKey(key[, type], callback)
key: keys.rsa.RsaPublicKey | keys.ed25519.Ed25519PublicKey | require('libp2p-crypto-secp256k1').Secp256k1PublicKey
-
type: String
, see Supported Key Types above.
Converts a public key object into a protobuf serialized public key.
crypto.keys.unmarshalPublicKey(buf)
buf: Buffer
Converts a protobuf serialized public key into its representative object.
crypto.keys.marshalPrivateKey(key[, type])
key: keys.rsa.RsaPrivateKey | keys.ed25519.Ed25519PrivateKey | require('libp2p-crypto-secp256k1').Secp256k1PrivateKey
-
type: String
, see Supported Key Types above.
Converts a private key object into a protobuf serialized private key.
crypto.keys.unmarshalPrivateKey(buf, callback)
buf: Buffer
callback: Function
Converts a protobuf serialized private key into its representative object.
crypto.keys.import(pem, password, callback)
pem: string
password: string
callback: Function
Converts a PEM password protected private key into its representative object.
crypto.randomBytes(number)
number: Number
Generates a Buffer with length number
populated by random bytes.
crypto.pbkdf2(password, salt, iterations, keySize, hash)
password: String
salt: String
iterations: Number
-
keySize: Number
in bytes -
hash: String
the hashing algorithm ('sha1', 'sha2-512', ...)
Computes the Password Based Key Derivation Function 2; returning a new password.
Contribute
Feel free to join in. All welcome. Open an issue!
This repository falls under the IPFS Code of Conduct.