The APIs of higher level constructs in this module are experimental and under active development. They are subject to non-backward compatible changes or removal in any future version. These are not subject to the Semantic Versioning model and breaking changes will be announced in the release notes. This means that while you may use them, you may need to update your source code when upgrading to a newer version of this package.
The eks-v2-alpha module is a rewrite of the existing aws-eks module (https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_eks-readme.html). This new iteration leverages native L1 CFN resources, replacing the previous custom resource approach for creating EKS clusters and Fargate Profiles.
Compared to the original EKS module, it has the following major changes:
- Use native L1 AWS::EKS::Cluster resource to replace custom resource Custom::AWSCDK-EKS-Cluster
- Use native L1 AWS::EKS::FargateProfile resource to replace custom resource Custom::AWSCDK-EKS-FargateProfile
- Kubectl Handler will not be created by default. It will only be created if users specify it.
- Remove AwsAuth construct. Permissions to the cluster will be managed by Access Entry.
- Remove the limit of 1 cluster per stack
- Remove nested stacks
- API changes to make them more ergonomic.
Here is the minimal example of defining an AWS EKS cluster
const cluster = new eks.Cluster(this, 'hello-eks', {
version: eks.KubernetesVersion.V1_32,
});
+-----------------------------------------------+
| EKS Cluster | kubectl | |
| -----------------|<--------+| Kubectl Handler |
| AWS::EKS::Cluster (Optional) |
| +--------------------+ +-----------------+ |
| | | | | |
| | Managed Node Group | | Fargate Profile | |
| | | | | |
| +--------------------+ +-----------------+ |
+-----------------------------------------------+
^
| connect self managed capacity
+
+--------------------+
| Auto Scaling Group |
+--------------------+
In a nutshell:
- EKS Cluster - The cluster endpoint created by EKS.
- Managed Node Group - EC2 worker nodes managed by EKS.
- Fargate Profile - Fargate worker nodes managed by EKS.
- Auto Scaling Group - EC2 worker nodes managed by the user.
- Kubectl Handler (Optional) - Custom resource (i.e Lambda Function) for invoking kubectl commands on the cluster - created by CDK
Creating a new cluster is done using the Cluster
constructs. The only required property is the kubernetes version.
new eks.Cluster(this, 'HelloEKS', {
version: eks.KubernetesVersion.V1_32,
});
You can also use FargateCluster
to provision a cluster that uses only fargate workers.
new eks.FargateCluster(this, 'HelloEKS', {
version: eks.KubernetesVersion.V1_32,
});
Note: Unlike the previous EKS cluster, Kubectl Handler
will not
be created by default. It will only be deployed when kubectlProviderOptions
property is used.
import { KubectlV32Layer } from '@aws-cdk/lambda-layer-kubectl-v32';
new eks.Cluster(this, 'hello-eks', {
version: eks.KubernetesVersion.V1_32,
kubectlProviderOptions: {
kubectlLayer: new KubectlV32Layer(this, 'kubectl'),
}
});
Amazon EKS Auto Mode extends AWS management of Kubernetes clusters beyond the cluster itself, allowing AWS to set up and manage the infrastructure that enables the smooth operation of your workloads.
While aws-eks
uses DefaultCapacityType.NODEGROUP
by default, aws-eks-v2
uses DefaultCapacityType.AUTOMODE
as the default capacity type.
Auto Mode is enabled by default when creating a new cluster without specifying any capacity-related properties:
// Create EKS cluster with Auto Mode implicitly enabled
const cluster = new eks.Cluster(this, 'EksAutoCluster', {
version: eks.KubernetesVersion.V1_32,
});
You can also explicitly enable Auto Mode using defaultCapacityType
:
// Create EKS cluster with Auto Mode explicitly enabled
const cluster = new eks.Cluster(this, 'EksAutoCluster', {
version: eks.KubernetesVersion.V1_32,
defaultCapacityType: eks.DefaultCapacityType.AUTOMODE,
});
When Auto Mode is enabled, the cluster comes with two default node pools:
-
system
: For running system components and add-ons -
general-purpose
: For running your application workloads
These node pools are managed automatically by EKS. You can configure which node pools to enable through the compute
property:
const cluster = new eks.Cluster(this, 'EksAutoCluster', {
version: eks.KubernetesVersion.V1_32,
defaultCapacityType: eks.DefaultCapacityType.AUTOMODE,
compute: {
nodePools: ['system', 'general-purpose'],
},
});
For more information, see Create a Node Pool for EKS Auto Mode.
You can disable the default node pools entirely by setting an empty array for nodePools
. This is useful when you want to use Auto Mode features but manage your compute resources separately:
const cluster = new eks.Cluster(this, 'EksAutoCluster', {
version: eks.KubernetesVersion.V1_32,
defaultCapacityType: eks.DefaultCapacityType.AUTOMODE,
compute: {
nodePools: [], // Disable default node pools
},
});
When node pools are disabled this way, no IAM role will be created for the node pools, preventing deployment failures that would otherwise occur when a role is created without any node pools.
If you prefer to manage your own node groups instead of using Auto Mode, you can use the traditional node group approach by specifying defaultCapacityType
as NODEGROUP
:
// Create EKS cluster with traditional managed node group
const cluster = new eks.Cluster(this, 'EksCluster', {
version: eks.KubernetesVersion.V1_32,
defaultCapacityType: eks.DefaultCapacityType.NODEGROUP,
defaultCapacity: 3, // Number of instances
defaultCapacityInstance: ec2.InstanceType.of(ec2.InstanceClass.T3, ec2.InstanceSize.LARGE),
});
You can also create a cluster with no initial capacity and add node groups later:
const cluster = new eks.Cluster(this, 'EksCluster', {
version: eks.KubernetesVersion.V1_32,
defaultCapacityType: eks.DefaultCapacityType.NODEGROUP,
defaultCapacity: 0,
});
// Add node groups as needed
cluster.addNodegroupCapacity('custom-node-group', {
minSize: 1,
maxSize: 3,
instanceTypes: [ec2.InstanceType.of(ec2.InstanceClass.T3, ec2.InstanceSize.LARGE)],
});
Read Managed node groups for more information on how to add node groups to the cluster.
You can combine Auto Mode with traditional node groups for specific workload requirements:
const cluster = new eks.Cluster(this, 'Cluster', {
version: eks.KubernetesVersion.V1_32,
defaultCapacityType: eks.DefaultCapacityType.AUTOMODE,
compute: {
nodePools: ['system', 'general-purpose'],
},
});
// Add specialized node group for specific workloads
cluster.addNodegroupCapacity('specialized-workload', {
minSize: 1,
maxSize: 3,
instanceTypes: [ec2.InstanceType.of(ec2.InstanceClass.C5, ec2.InstanceSize.XLARGE)],
labels: {
workload: 'specialized',
},
});
-
Auto Mode and traditional capacity management are mutually exclusive at the default capacity level. You cannot opt in to Auto Mode and specify
defaultCapacity
ordefaultCapacityInstance
. -
When Auto Mode is enabled:
- The cluster will automatically manage compute resources
- Node pools cannot be modified, only enabled or disabled
- EKS will handle scaling and management of the node pools
-
Auto Mode requires specific IAM permissions. The construct will automatically attach the required managed policies.
Amazon EKS managed node groups automate the provisioning and lifecycle management of nodes (Amazon EC2 instances) for Amazon EKS Kubernetes clusters. With Amazon EKS managed node groups, you don't need to separately provision or register the Amazon EC2 instances that provide compute capacity to run your Kubernetes applications. You can create, update, or terminate nodes for your cluster with a single operation. Nodes run using the latest Amazon EKS optimized AMIs in your AWS account while node updates and terminations gracefully drain nodes to ensure that your applications stay available.
For more details visit Amazon EKS Managed Node Groups.
By default, when using DefaultCapacityType.NODEGROUP
, this library will allocate a managed node group with 2 m5.large instances (this instance type suits most common use-cases, and is good value for money).
new eks.Cluster(this, 'HelloEKS', {
version: eks.KubernetesVersion.V1_32,
defaultCapacityType: eks.DefaultCapacityType.NODEGROUP,
});
At cluster instantiation time, you can customize the number of instances and their type:
new eks.Cluster(this, 'HelloEKS', {
version: eks.KubernetesVersion.V1_32,
defaultCapacityType: eks.DefaultCapacityType.NODEGROUP,
defaultCapacity: 5,
defaultCapacityInstance: ec2.InstanceType.of(ec2.InstanceClass.M5, ec2.InstanceSize.SMALL),
});
To access the node group that was created on your behalf, you can use cluster.defaultNodegroup
.
Additional customizations are available post instantiation. To apply them, set the default capacity to 0, and use the cluster.addNodegroupCapacity
method:
const cluster = new eks.Cluster(this, 'HelloEKS', {
version: eks.KubernetesVersion.V1_32,
defaultCapacityType: eks.DefaultCapacityType.NODEGROUP,
defaultCapacity: 0,
});
cluster.addNodegroupCapacity('custom-node-group', {
instanceTypes: [new ec2.InstanceType('m5.large')],
minSize: 4,
diskSize: 100,
});
AWS Fargate is a technology that provides on-demand, right-sized compute capacity for containers. With AWS Fargate, you no longer have to provision, configure, or scale groups of virtual machines to run containers. This removes the need to choose server types, decide when to scale your node groups, or optimize cluster packing.
You can control which pods start on Fargate and how they run with Fargate Profiles, which are defined as part of your Amazon EKS cluster.
See Fargate Considerations in the AWS EKS User Guide.
You can add Fargate Profiles to any EKS cluster defined in your CDK app
through the addFargateProfile()
method. The following example adds a profile
that will match all pods from the "default" namespace:
declare const cluster: eks.Cluster;
cluster.addFargateProfile('MyProfile', {
selectors: [ { namespace: 'default' } ],
});
You can also directly use the FargateProfile
construct to create profiles under different scopes:
declare const cluster: eks.Cluster;
new eks.FargateProfile(this, 'MyProfile', {
cluster,
selectors: [ { namespace: 'default' } ],
});
To create an EKS cluster that only uses Fargate capacity, you can use FargateCluster
.
The following code defines an Amazon EKS cluster with a default Fargate Profile that matches all pods from the "kube-system" and "default" namespaces. It is also configured to run CoreDNS on Fargate.
const cluster = new eks.FargateCluster(this, 'MyCluster', {
version: eks.KubernetesVersion.V1_32,
});
FargateCluster
will create a default FargateProfile
which can be accessed via the cluster's defaultProfile
property. The created profile can also be customized by passing options as with addFargateProfile
.
NOTE: Classic Load Balancers and Network Load Balancers are not supported on pods running on Fargate. For ingress, we recommend that you use the ALB Ingress Controller on Amazon EKS (minimum version v1.1.4).
When you create a new cluster, Amazon EKS creates an endpoint for the managed Kubernetes API server that you use to communicate with your cluster (using Kubernetes management tools such as kubectl
)
You can configure the cluster endpoint access by using the endpointAccess
property:
const cluster = new eks.Cluster(this, 'hello-eks', {
version: eks.KubernetesVersion.V1_32,
endpointAccess: eks.EndpointAccess.PRIVATE, // No access outside of your VPC.
});
The default value is eks.EndpointAccess.PUBLIC_AND_PRIVATE
. Which means the cluster endpoint is accessible from outside of your VPC, but worker node traffic and kubectl
commands issued by this library stay within your VPC.
Some Kubernetes resources are commonly implemented on AWS with the help of the ALB Controller.
From the docs:
AWS Load Balancer Controller is a controller to help manage Elastic Load Balancers for a Kubernetes cluster.
- It satisfies Kubernetes Ingress resources by provisioning Application Load Balancers.
- It satisfies Kubernetes Service resources by provisioning Network Load Balancers.
To deploy the controller on your EKS cluster, configure the albController
property:
new eks.Cluster(this, 'HelloEKS', {
version: eks.KubernetesVersion.V1_32,
albController: {
version: eks.AlbControllerVersion.V2_8_2,
},
});
The albController
requires defaultCapacity
or at least one nodegroup. If there's no defaultCapacity
or available
nodegroup for the cluster, the albController
deployment would fail.
Querying the controller pods should look something like this:
❯ kubectl get pods -n kube-system
NAME READY STATUS RESTARTS AGE
aws-load-balancer-controller-76bd6c7586-d929p 1/1 Running 0 109m
aws-load-balancer-controller-76bd6c7586-fqxph 1/1 Running 0 109m
...
...
Every Kubernetes manifest that utilizes the ALB Controller is effectively dependant on the controller. If the controller is deleted before the manifest, it might result in dangling ELB/ALB resources. Currently, the EKS construct library does not detect such dependencies, and they should be done explicitly.
For example:
declare const cluster: eks.Cluster;
const manifest = cluster.addManifest('manifest', {/* ... */});
if (cluster.albController) {
manifest.node.addDependency(cluster.albController);
}
You can specify the VPC of the cluster using the vpc
and vpcSubnets
properties:
declare const vpc: ec2.Vpc;
new eks.Cluster(this, 'HelloEKS', {
version: eks.KubernetesVersion.V1_32,
vpc,
vpcSubnets: [{ subnetType: ec2.SubnetType.PRIVATE_WITH_EGRESS }],
});
If you do not specify a VPC, one will be created on your behalf, which you can then access via cluster.vpc
. The cluster VPC will be associated to any EKS managed capacity (i.e Managed Node Groups and Fargate Profiles).
Please note that the vpcSubnets
property defines the subnets where EKS will place the control plane ENIs. To choose
the subnets where EKS will place the worker nodes, please refer to the Provisioning clusters section above.
If you allocate self managed capacity, you can specify which subnets should the auto-scaling group use:
declare const vpc: ec2.Vpc;
declare const cluster: eks.Cluster;
cluster.addAutoScalingGroupCapacity('nodes', {
vpcSubnets: { subnets: vpc.privateSubnets },
instanceType: new ec2.InstanceType('t2.medium'),
});
There is an additional components you might want to provision within the VPC.
The KubectlHandler
is a Lambda function responsible to issuing kubectl
and helm
commands against the cluster when you add resource manifests to the cluster.
The handler association to the VPC is derived from the endpointAccess
configuration. The rule of thumb is: If the cluster VPC can be associated, it will be.
Breaking this down, it means that if the endpoint exposes private access (via EndpointAccess.PRIVATE
or EndpointAccess.PUBLIC_AND_PRIVATE
), and the VPC contains private subnets, the Lambda function will be provisioned inside the VPC and use the private subnets to interact with the cluster. This is the common use-case.
If the endpoint does not expose private access (via EndpointAccess.PUBLIC
) or the VPC does not contain private subnets, the function will not be provisioned within the VPC.
If your use-case requires control over the IAM role that the KubeCtl Handler assumes, a custom role can be passed through the ClusterProps (as kubectlLambdaRole
) of the EKS Cluster construct.
You can choose to have CDK create a Kubectl Handler
- a Python Lambda Function to
apply k8s manifests using kubectl apply
. This handler will not be created by default.
To create a Kubectl Handler
, use kubectlProviderOptions
when creating the cluster.
kubectlLayer
is the only required property in kubectlProviderOptions
.
import { KubectlV32Layer } from '@aws-cdk/lambda-layer-kubectl-v32';
new eks.Cluster(this, 'hello-eks', {
version: eks.KubernetesVersion.V1_32,
kubectlProviderOptions: {
kubectlLayer: new KubectlV32Layer(this, 'kubectl'),
}
});
Kubectl Handler
created along with the cluster will be granted admin permissions to the cluster.
If you want to use an existing kubectl provider function, for example with tight trusted entities on your IAM Roles - you can import the existing provider and then use the imported provider when importing the cluster:
import { KubectlV32Layer } from '@aws-cdk/lambda-layer-kubectl-v32';
const handlerRole = iam.Role.fromRoleArn(this, 'HandlerRole', 'arn:aws:iam::123456789012:role/lambda-role');
// get the serivceToken from the custom resource provider
const functionArn = lambda.Function.fromFunctionName(this, 'ProviderOnEventFunc', 'ProviderframeworkonEvent-XXX').functionArn;
const kubectlProvider = eks.KubectlProvider.fromKubectlProviderAttributes(this, 'KubectlProvider', {
serviceToken: functionArn,
role: handlerRole,
});
const cluster = eks.Cluster.fromClusterAttributes(this, 'Cluster', {
clusterName: 'cluster',
kubectlProvider,
});
You can configure the environment of this function by specifying it at cluster instantiation. For example, this can be useful in order to configure an http proxy:
import { KubectlV32Layer } from '@aws-cdk/lambda-layer-kubectl-v32';
const cluster = new eks.Cluster(this, 'hello-eks', {
version: eks.KubernetesVersion.V1_32,
kubectlProviderOptions: {
kubectlLayer: new KubectlV32Layer(this, 'kubectl'),
environment: {
'http_proxy': 'http://proxy.myproxy.com',
},
}
});
The kubectl handler uses kubectl
, helm
and the aws
CLI in order to
interact with the cluster. These are bundled into AWS Lambda layers included in
the @aws-cdk/lambda-layer-awscli
and @aws-cdk/lambda-layer-kubectl
modules.
The version of kubectl used must be compatible with the Kubernetes version of the
cluster. kubectl is supported within one minor version (older or newer) of Kubernetes
(see Kubernetes version skew policy).
Depending on which version of kubernetes you're targeting, you will need to use one of
the @aws-cdk/lambda-layer-kubectl-vXY
packages.
import { KubectlV32Layer } from '@aws-cdk/lambda-layer-kubectl-v32';
const cluster = new eks.Cluster(this, 'hello-eks', {
version: eks.KubernetesVersion.V1_32,
kubectlProviderOptions: {
kubectlLayer: new KubectlV32Layer(this, 'kubectl'),
},
});
By default, the kubectl provider is configured with 1024MiB of memory. You can use the memory
option to specify the memory size for the AWS Lambda function:
import { KubectlV32Layer } from '@aws-cdk/lambda-layer-kubectl-v32';
new eks.Cluster(this, 'MyCluster', {
kubectlProviderOptions: {
kubectlLayer: new KubectlV32Layer(this, 'kubectl'),
memory: Size.gibibytes(4),
},
version: eks.KubernetesVersion.V1_32,
});
Instance types with ARM64
architecture are supported in both managed nodegroup and self-managed capacity. Simply specify an ARM64 instanceType
(such as m6g.medium
), and the latest
Amazon Linux 2 AMI for ARM64 will be automatically selected.
declare const cluster: eks.Cluster;
// add a managed ARM64 nodegroup
cluster.addNodegroupCapacity('extra-ng-arm', {
instanceTypes: [new ec2.InstanceType('m6g.medium')],
minSize: 2,
});
// add a self-managed ARM64 nodegroup
cluster.addAutoScalingGroupCapacity('self-ng-arm', {
instanceType: new ec2.InstanceType('m6g.medium'),
minCapacity: 2,
})
When you create a cluster, you can specify a mastersRole
. The Cluster
construct will associate this role with AmazonEKSClusterAdminPolicy
through Access Entry.
declare const role: iam.Role;
new eks.Cluster(this, 'HelloEKS', {
version: eks.KubernetesVersion.V1_32,
mastersRole: role,
});
If you do not specify it, you won't have access to the cluster from outside of the CDK application.
When you create an Amazon EKS cluster, envelope encryption of Kubernetes secrets using the AWS Key Management Service (AWS KMS) can be enabled. The documentation on creating a cluster can provide more details about the customer master key (CMK) that can be used for the encryption.
You can use the secretsEncryptionKey
to configure which key the cluster will use to encrypt Kubernetes secrets. By default, an AWS Managed key will be used.
This setting can only be specified when the cluster is created and cannot be updated.
const secretsKey = new kms.Key(this, 'SecretsKey');
const cluster = new eks.Cluster(this, 'MyCluster', {
secretsEncryptionKey: secretsKey,
version: eks.KubernetesVersion.V1_32,
});
You can also use a similar configuration for running a cluster built using the FargateCluster construct.
const secretsKey = new kms.Key(this, 'SecretsKey');
const cluster = new eks.FargateCluster(this, 'MyFargateCluster', {
secretsEncryptionKey: secretsKey,
version: eks.KubernetesVersion.V1_32,
});
The Amazon Resource Name (ARN) for that CMK can be retrieved.
declare const cluster: eks.Cluster;
const clusterEncryptionConfigKeyArn = cluster.clusterEncryptionConfigKeyArn;
In the new EKS module, ConfigMap
is deprecated. Clusters created by the new module will use API
as authentication mode. Access Entry will be the only way for granting permissions to specific IAM users and roles.
An access entry is a cluster identity—directly linked to an AWS IAM principal user or role that is used to authenticate to an Amazon EKS cluster. An Amazon EKS access policy authorizes an access entry to perform specific cluster actions.
Access policies are Amazon EKS-specific policies that assign Kubernetes permissions to access entries. Amazon EKS supports only predefined and AWS managed policies. Access policies are not AWS IAM entities and are defined and managed by Amazon EKS. Amazon EKS access policies include permission sets that support common use cases of administration, editing, or read-only access to Kubernetes resources. See Access Policy Permissions for more details.
Use AccessPolicy
to include predefined AWS managed policies:
// AmazonEKSClusterAdminPolicy with `cluster` scope
eks.AccessPolicy.fromAccessPolicyName('AmazonEKSClusterAdminPolicy', {
accessScopeType: eks.AccessScopeType.CLUSTER,
});
// AmazonEKSAdminPolicy with `namespace` scope
eks.AccessPolicy.fromAccessPolicyName('AmazonEKSAdminPolicy', {
accessScopeType: eks.AccessScopeType.NAMESPACE,
namespaces: ['foo', 'bar'] } );
Use grantAccess()
to grant the AccessPolicy to an IAM principal:
import { KubectlV32Layer } from '@aws-cdk/lambda-layer-kubectl-v32';
declare const vpc: ec2.Vpc;
const clusterAdminRole = new iam.Role(this, 'ClusterAdminRole', {
assumedBy: new iam.ArnPrincipal('arn_for_trusted_principal'),
});
const eksAdminRole = new iam.Role(this, 'EKSAdminRole', {
assumedBy: new iam.ArnPrincipal('arn_for_trusted_principal'),
});
const cluster = new eks.Cluster(this, 'Cluster', {
vpc,
mastersRole: clusterAdminRole,
version: eks.KubernetesVersion.V1_32,
kubectlProviderOptions: {
kubectlLayer: new KubectlV32Layer(this, 'kubectl'),
memory: Size.gibibytes(4),
},
});
// Cluster Admin role for this cluster
cluster.grantAccess('clusterAdminAccess', clusterAdminRole.roleArn, [
eks.AccessPolicy.fromAccessPolicyName('AmazonEKSClusterAdminPolicy', {
accessScopeType: eks.AccessScopeType.CLUSTER,
}),
]);
// EKS Admin role for specified namespaces of this cluster
cluster.grantAccess('eksAdminRoleAccess', eksAdminRole.roleArn, [
eks.AccessPolicy.fromAccessPolicyName('AmazonEKSAdminPolicy', {
accessScopeType: eks.AccessScopeType.NAMESPACE,
namespaces: ['foo', 'bar'],
}),
]);
By default, the cluster creator role will be granted the cluster admin permissions. You can disable it by setting
bootstrapClusterCreatorAdminPermissions
to false.
Note - Switching
bootstrapClusterCreatorAdminPermissions
on an existing cluster would cause cluster replacement and should be avoided in production.
When you create an Amazon EKS cluster, a cluster security group is automatically created as well. This security group is designed to allow all traffic from the control plane and managed node groups to flow freely between each other.
The ID for that security group can be retrieved after creating the cluster.
declare const cluster: eks.Cluster;
const clusterSecurityGroupId = cluster.clusterSecurityGroupId;
To apply kubernetes resource, kubectl provider needs to be created for the cluster. You can use kubectlProviderOptions
to create the kubectl Provider.
The library supports several popular resource deployment mechanisms, among which are:
The KubernetesManifest
construct or cluster.addManifest
method can be used
to apply Kubernetes resource manifests to this cluster.
When using
cluster.addManifest
, the manifest construct is defined within the cluster's stack scope. If the manifest contains attributes from a different stack which depend on the cluster stack, a circular dependency will be created and you will get a synth time error. To avoid this, directly usenew KubernetesManifest
to create the manifest in the scope of the other stack.
The following examples will deploy the paulbouwer/hello-kubernetes service on the cluster:
declare const cluster: eks.Cluster;
const appLabel = { app: "hello-kubernetes" };
const deployment = {
apiVersion: "apps/v1",
kind: "Deployment",
metadata: { name: "hello-kubernetes" },
spec: {
replicas: 3,
selector: { matchLabels: appLabel },
template: {
metadata: { labels: appLabel },
spec: {
containers: [
{
name: "hello-kubernetes",
image: "paulbouwer/hello-kubernetes:1.5",
ports: [ { containerPort: 8080 } ],
},
],
},
},
},
};
const service = {
apiVersion: "v1",
kind: "Service",
metadata: { name: "hello-kubernetes" },
spec: {
type: "LoadBalancer",
ports: [ { port: 80, targetPort: 8080 } ],
selector: appLabel,
}
};
// option 1: use a construct
new eks.KubernetesManifest(this, 'hello-kub', {
cluster,
manifest: [ deployment, service ],
});
// or, option2: use `addManifest`
cluster.addManifest('hello-kub', service, deployment);
The KubernetesManifest
construct can detect ingress resources inside your manifest and automatically add the necessary annotations
so they are picked up by the ALB Controller.
See Alb Controller
To that end, it offers the following properties:
-
ingressAlb
- Signal that the ingress detection should be done. -
ingressAlbScheme
- Which ALB scheme should be applied. Defaults tointernal
.
The following example will deploy the resource manifest hosting on remote server:
// This example is only available in TypeScript
import * as yaml from 'js-yaml';
import * as request from 'sync-request';
declare const cluster: eks.Cluster;
const manifestUrl = 'https://url/of/manifest.yaml';
const manifest = yaml.safeLoadAll(request('GET', manifestUrl).getBody());
cluster.addManifest('my-resource', manifest);
There are cases where Kubernetes resources must be deployed in a specific order. For example, you cannot define a resource in a Kubernetes namespace before the namespace was created.
You can represent dependencies between KubernetesManifest
s using
resource.node.addDependency()
:
declare const cluster: eks.Cluster;
const namespace = cluster.addManifest('my-namespace', {
apiVersion: 'v1',
kind: 'Namespace',
metadata: { name: 'my-app' },
});
const service = cluster.addManifest('my-service', {
metadata: {
name: 'myservice',
namespace: 'my-app',
},
spec: { }, // ...
});
service.node.addDependency(namespace); // will apply `my-namespace` before `my-service`.
NOTE: when a KubernetesManifest
includes multiple resources (either directly
or through cluster.addManifest()
) (e.g. cluster.addManifest('foo', r1, r2, r3,...)
), these resources will be applied as a single manifest via kubectl
and will be applied sequentially (the standard behavior in kubectl
).
Since Kubernetes manifests are implemented as CloudFormation resources in the
CDK. This means that if the manifest is deleted from your code (or the stack is
deleted), the next cdk deploy
will issue a kubectl delete
command and the
Kubernetes resources in that manifest will be deleted.
When a resource is deleted from a Kubernetes manifest, the EKS module will
automatically delete these resources by injecting a prune label to all
manifest resources. This label is then passed to kubectl apply --prune
.
Pruning is enabled by default but can be disabled through the prune
option
when a cluster is defined:
new eks.Cluster(this, 'MyCluster', {
version: eks.KubernetesVersion.V1_32,
prune: false,
});
The kubectl
CLI supports applying a manifest by skipping the validation.
This can be accomplished by setting the skipValidation
flag to true
in the KubernetesManifest
props.
declare const cluster: eks.Cluster;
new eks.KubernetesManifest(this, 'HelloAppWithoutValidation', {
cluster,
manifest: [{ foo: 'bar' }],
skipValidation: true,
});
The HelmChart
construct or cluster.addHelmChart
method can be used
to add Kubernetes resources to this cluster using Helm.
When using
cluster.addHelmChart
, the manifest construct is defined within the cluster's stack scope. If the manifest contains attributes from a different stack which depend on the cluster stack, a circular dependency will be created and you will get a synth time error. To avoid this, directly usenew HelmChart
to create the chart in the scope of the other stack.
The following example will install the NGINX Ingress Controller to your cluster using Helm.
declare const cluster: eks.Cluster;
// option 1: use a construct
new eks.HelmChart(this, 'NginxIngress', {
cluster,
chart: 'nginx-ingress',
repository: 'https://helm.nginx.com/stable',
namespace: 'kube-system',
});
// or, option2: use `addHelmChart`
cluster.addHelmChart('NginxIngress', {
chart: 'nginx-ingress',
repository: 'https://helm.nginx.com/stable',
namespace: 'kube-system',
});
Helm charts will be installed and updated using helm upgrade --install
, where a few parameters
are being passed down (such as repo
, values
, version
, namespace
, wait
, timeout
, etc).
This means that if the chart is added to CDK with the same release name, it will try to update
the chart in the cluster.
Additionally, the chartAsset
property can be an aws-s3-assets.Asset
. This allows the use of local, private helm charts.
import * as s3Assets from 'aws-cdk-lib/aws-s3-assets';
declare const cluster: eks.Cluster;
const chartAsset = new s3Assets.Asset(this, 'ChartAsset', {
path: '/path/to/asset'
});
cluster.addHelmChart('test-chart', {
chartAsset: chartAsset,
});
Nested values passed to the values
parameter should be provided as a nested dictionary:
declare const cluster: eks.Cluster;
cluster.addHelmChart('ExternalSecretsOperator', {
chart: 'external-secrets',
release: 'external-secrets',
repository: 'https://charts.external-secrets.io',
namespace: 'external-secrets',
values: {
installCRDs: true,
webhook: {
port: 9443
}
},
});
Helm chart can come with Custom Resource Definitions (CRDs) defined that by default will be installed by helm as well. However in special cases it might be needed to skip the installation of CRDs, for that the property skipCrds
can be used.
declare const cluster: eks.Cluster;
// option 1: use a construct
new eks.HelmChart(this, 'NginxIngress', {
cluster,
chart: 'nginx-ingress',
repository: 'https://helm.nginx.com/stable',
namespace: 'kube-system',
skipCrds: true,
});
OCI charts are also supported.
Also replace the ${VARS}
with appropriate values.
declare const cluster: eks.Cluster;
// option 1: use a construct
new eks.HelmChart(this, 'MyOCIChart', {
cluster,
chart: 'some-chart',
repository: 'oci://${ACCOUNT_ID}.dkr.ecr.${ACCOUNT_REGION}.amazonaws.com/${REPO_NAME}',
namespace: 'oci',
version: '0.0.1'
});
Helm charts are implemented as CloudFormation resources in CDK.
This means that if the chart is deleted from your code (or the stack is
deleted), the next cdk deploy
will issue a helm uninstall
command and the
Helm chart will be deleted.
When there is no release
defined, a unique ID will be allocated for the release based
on the construct path.
By default, all Helm charts will be installed concurrently. In some cases, this
could cause race conditions where two Helm charts attempt to deploy the same
resource or if Helm charts depend on each other. You can use
chart.node.addDependency()
in order to declare a dependency order between
charts:
declare const cluster: eks.Cluster;
const chart1 = cluster.addHelmChart('MyChart', {
chart: 'foo',
});
const chart2 = cluster.addHelmChart('MyChart', {
chart: 'bar',
});
chart2.node.addDependency(chart1);
You can also compose a few stock cdk8s+
constructs into your own custom construct. However, since mixing scopes between aws-cdk
and cdk8s
is currently not supported, the Construct
class
you'll need to use is the one from the constructs
module, and not from aws-cdk-lib
like you normally would.
This is why we used new cdk8s.App()
as the scope of the chart above.
import * as constructs from 'constructs';
import * as cdk8s from 'cdk8s';
import * as kplus from 'cdk8s-plus-25';
interface LoadBalancedWebService {
readonly port: number;
readonly image: string;
readonly replicas: number;
}
const app = new cdk8s.App();
const chart = new cdk8s.Chart(app, 'my-chart');
class LoadBalancedWebService extends constructs.Construct {
constructor(scope: constructs.Construct, id: string, props: LoadBalancedWebService) {
super(scope, id);
const deployment = new kplus.Deployment(chart, 'Deployment', {
replicas: props.replicas,
containers: [ new kplus.Container({ image: props.image }) ],
});
deployment.exposeViaService({
ports: [
{ port: props.port },
],
serviceType: kplus.ServiceType.LOAD_BALANCER,
});
}
}
If you find yourself unable to use cdk8s+
, or just like to directly use the k8s
native objects or CRD's, you can do so by manually importing them using the cdk8s-cli
.
See Importing kubernetes objects for detailed instructions.
The KubernetesPatch
construct can be used to update existing kubernetes
resources. The following example can be used to patch the hello-kubernetes
deployment from the example above with 5 replicas.
declare const cluster: eks.Cluster;
new eks.KubernetesPatch(this, 'hello-kub-deployment-label', {
cluster,
resourceName: "deployment/hello-kubernetes",
applyPatch: { spec: { replicas: 5 } },
restorePatch: { spec: { replicas: 3 } },
})
The KubernetesObjectValue
construct can be used to query for information about kubernetes objects,
and use that as part of your CDK application.
For example, you can fetch the address of a LoadBalancer
type service:
declare const cluster: eks.Cluster;
// query the load balancer address
const myServiceAddress = new eks.KubernetesObjectValue(this, 'LoadBalancerAttribute', {
cluster: cluster,
objectType: 'service',
objectName: 'my-service',
jsonPath: '.status.loadBalancer.ingress[0].hostname', // https://kubernetes.io/docs/reference/kubectl/jsonpath/
});
// pass the address to a lambda function
const proxyFunction = new lambda.Function(this, 'ProxyFunction', {
handler: 'index.handler',
code: lambda.Code.fromInline('my-code'),
runtime: lambda.Runtime.NODEJS_LATEST,
environment: {
myServiceAddress: myServiceAddress.value,
},
})
Specifically, since the above use-case is quite common, there is an easier way to access that information:
declare const cluster: eks.Cluster;
const loadBalancerAddress = cluster.getServiceLoadBalancerAddress('my-service');
Add-ons is a software that provides supporting operational capabilities to Kubernetes applications. The EKS module supports adding add-ons to your cluster using the eks.Addon
class.
declare const cluster: eks.Cluster;
new eks.Addon(this, 'Addon', {
cluster,
addonName: 'aws-guardduty-agent',
addonVersion: 'v1.6.1',
// whether to preserve the add-on software on your cluster but Amazon EKS stops managing any settings for the add-on.
preserveOnDelete: false,
});
The EKS library allows defining Kubernetes resources such as Kubernetes manifests and Helm charts on clusters that are not defined as part of your CDK app.
First you will need to import the kubectl provider and cluster created in another stack
const handlerRole = iam.Role.fromRoleArn(this, 'HandlerRole', 'arn:aws:iam::123456789012:role/lambda-role');
const kubectlProvider = eks.KubectlProvider.fromKubectlProviderAttributes(this, 'KubectlProvider', {
serviceToken: 'arn:aws:lambda:us-east-2:123456789012:function:my-function:1',
role: handlerRole,
});
const cluster = eks.Cluster.fromClusterAttributes(this, 'Cluster', {
clusterName: 'cluster',
kubectlProvider,
});
Then, you can use addManifest
or addHelmChart
to define resources inside
your Kubernetes cluster.
declare const cluster: eks.Cluster;
cluster.addManifest('Test', {
apiVersion: 'v1',
kind: 'ConfigMap',
metadata: {
name: 'myconfigmap',
},
data: {
Key: 'value',
Another: '123454',
},
});
EKS supports cluster logging for 5 different types of events:
- API requests to the cluster.
- Cluster access via the Kubernetes API.
- Authentication requests into the cluster.
- State of cluster controllers.
- Scheduling decisions.
You can enable logging for each one separately using the clusterLogging
property. For example:
const cluster = new eks.Cluster(this, 'Cluster', {
// ...
version: eks.KubernetesVersion.V1_32,
clusterLogging: [
eks.ClusterLoggingTypes.API,
eks.ClusterLoggingTypes.AUTHENTICATOR,
eks.ClusterLoggingTypes.SCHEDULER,
],
});
You can enable Managed Node Group auto-repair config using enableNodeAutoRepair
property. For example:
declare const cluster: eks.Cluster;
cluster.addNodegroupCapacity('NodeGroup', {
enableNodeAutoRepair:true,
});