Vector store implementation for ChromaDB using the official chromadb client with added dimension validation, collection management, and document storage capabilities.
npm install @mastra/chroma
import { ChromaVector } from '@mastra/chroma';
const vectorStore = new ChromaVector({
path: 'http://localhost:8000', // ChromaDB server URL
auth: { // Optional authentication
provider: 'token',
credentials: 'your-token'
}
});
// Create a new collection
await vectorStore.createIndex({ indexName: 'myCollection', dimension: 1536, metric: 'cosine' });
// Add vectors with documents
const vectors = [[0.1, 0.2, ...], [0.3, 0.4, ...]];
const metadata = [{ text: 'doc1' }, { text: 'doc2' }];
const documents = ['full text 1', 'full text 2'];
const ids = await vectorStore.upsert({
indexName: 'myCollection',
vectors,
metadata,
documents, // store original text
});
// Query vectors with document filtering
const results = await vectorStore.query({
indexName: 'myCollection',
queryVector: [0.1, 0.2, ...],
topK: 10, // topK
filter: { text: { $eq: 'doc1' } }, // metadata filter
includeVector: false, // includeVector
documentFilter: { $contains: 'specific text' } // document content filter
});
Required:
-
path
: URL of your ChromaDB server
Optional:
-
auth
: Authentication configuration-
provider
: Authentication provider -
credentials
: Authentication credentials
-
- Vector similarity search with cosine, euclidean, and dot product metrics
- Document storage and retrieval
- Document content filtering
- Strict vector dimension validation
- Collection-based organization
- Metadata filtering support
- Optional vector inclusion in query results
- Automatic UUID generation for vectors
- Built-in collection caching for performance
- Built on top of chromadb client
-
createIndex({ indexName, dimension, metric? })
: Create a new collection -
upsert({ indexName, vectors, metadata?, ids?, documents? })
: Add or update vectors with optional document storage -
query({ indexName, queryVector, topK?, filter?, includeVector?, documentFilter? })
: Search for similar vectors with optional document filtering -
listIndexes()
: List all collections -
describeIndex(indexName)
: Get collection statistics -
deleteIndex(indexName)
: Delete a collection
Query results include:
-
id
: Vector ID -
score
: Distance/similarity score -
metadata
: Associated metadata -
document
: Original document text (if stored) -
vector
: Original vector (if includeVector is true)