@orq-ai/node
TypeScript icon, indicating that this package has built-in type declarations

2.14.4 • Public • Published

Orq

Build AI Applications from Playground to Production

orq.ai Node SDK

The orq.ai Node library enables easy orq.ai REST API integration in NodeJS 16+ apps.

Documentation

The REST API documentation can be found on docs.orq.ai.

Installation

npm install @orq-ai/node
yarn add @orq-ai/node

Usage

You can get your workspace API key from the settings section in your orq.ai workspace. https://my.orq.ai/<workspace>/settings/developers

Initialize the orq.ai client with your API key:

import { createClient } from '@orq-ai/node';

const client = createClient({
  apiKey: 'orquesta-api-key',
  environment: 'production',
});

generation = await client.deployments.invoke(
  key: 'customer_service',
  context: { environments: 'production', country: 'NLD' },
  inputs: { firstname: 'John', city: 'New York' },
  metadata: { customer_id: 'Qwtqwty90281' },
);

Deployments

The Deployments API delivers text outputs, images or tool calls based on the configuration established within orq.ai for your deployments. Additionally, this API supports streaming. To ensure ease of use and minimize errors, using the code snippets from the orq.ai Admin panel is highly recommended.

Invoke a deployment

invoke()

const generation = await client.deployments.invoke({
  key: 'customer_service',
  context: { environments: 'production', country: 'NLD' },
  inputs: { firstname: 'John', city: 'New York' },
  metadata: { customer_id: 'Qwtqwty90281' },
});

console.log(generation?.choices[0].message.content);

invoke_with_stream()

const deployment = await client.deployments.invoke({
  key: 'customer_service',
  context: { environments: 'production', country: 'NLD' },
  inputs: { firstname: 'John', city: 'New York' },
  metadata: { customer_id: 'Qwtqwty90281' },
});

for await (const chunk of stream) {
  console.log(chunk.choices[0]?.message.content);
}

Adding messages as part of your request

If you are using the invoke method, you can include messages in your request to the model. The messages property allows you to combine chat_history with the prompt configuration in Orq, or to directly send messages to the model if you are managing the prompt in your code.

generation = await client.deployments.invoke(
  key: 'customer_service',
  context:{
    language: [],
    environments: [],
  },
  metadata: {
    'custom-field-name': 'custom-metadata-value',
  },
  inputs:{ firstname: 'John', city: 'New York' },
  messages: [
    {
      role: 'user',
      content:
        'A customer is asking about the latest software update features. Generate a detailed and informative response highlighting the key new features and improvements in the latest update.',
    },
  ]
);

Logging metrics to the deployment configuration

After invoking, streaming or getting the configuration of a deployment, you can use the add_metrics method to add information to the deployment.

generation.addMetrics({
  user_id: 'e3a202a6-461b-447c-abe2-018ba4d04cd0',
  feedback: { score: 100 },
  metadata: {
    custom: 'custom_metadata',
    chain_id: 'ad1231xsdaABw',
  },
});

Get deployment configuration

get_config()

const deploymentPromptConfig = await client.deployments.getConfig({
  key: 'customer_service',
  context: { environments: 'production', country: 'NLD' },
  inputs: { firstname: 'John', city: 'New York' },
  metadata: { customer_id: 'Qwtqwty90281' },
});

console.log(deploymentPromptConfig);

Logging metrics to the deployment configuration

After invoking, streaming or getting the configuration of a deployment, you can use the add_metrics method to add information to the deployment.

deploymentPromptConfig.addMetrics({
  chain_id: 'c4a75b53-62fa-401b-8e97-493f3d299316',
  user_id: 'e3a202a6-461b-447c-abe2-018ba4d04cd0',
  feedback: { score: 100 },
  metadata: {
    custom: 'custom_metadata',
    chain_id: 'ad1231xsdaABw',
  },
  usage: {
    prompt_tokens: 100,
    completion_tokens: 900,
    total_tokens: 1000,
  },
  performance: {
    latency: 9000,
    time_to_first_token: 250,
  },
});

Logging LLM responses

Whether you use the get_config or invoke, you can log the model generations to the deployment. Here are some examples of how to do it.

Logging the completion choices the model generated for the input prompt

generation.addMetrics(
  choices:[
    {
      index: 0,
      finish_reason: 'assistant',
      message: {
        role: 'assistant',
        content:
          "Dear customer: Thank you for your interest in our latest software update! We're excited to share with you the new features and improvements we've rolled out. Here's what you can look forward to in this update",
      },
    },
  ]
);

Logging the completion choices the model generated for the input prompt

You can save the images generated by the model in Orq. If the image format is base64 we always store it as a png.

generation.addMetrics(
  choices: [
    {
      index: 0,
      finish_reason: 'stop',
      message: {
        role: 'assistant',
        url: '<image_url>',
      },
    },
  ]
);

Logging the output of the tool calls

generation.addMetrics(
  choices: [
    {
      index: 0,
      message: {
        role: 'assistant',
        content: None,
        tool_calls: [
          {
            type: 'function',
            id: 'call_pDBPMMacPXOtoWhTWibW1D94',
            function: {
              name: 'get_weather',
              arguments: '{"location":"San Francisco, CA"}',
            },
          },
        ],
      },
      finish_reason: 'tool_calls',
    },
  ]
);

API documentation

Contacts

Feedback

Webhooks

Package Sidebar

Install

npm i @orq-ai/node

Homepage

orq.ai

Weekly Downloads

347

Version

2.14.4

License

MIT

Unpacked Size

55 kB

Total Files

62

Last publish

Collaborators

  • sohrabhosseini
  • orquestadev