About stdlib...
We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.
The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.
When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.
To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!
Perform a series of row interchanges on an input matrix.
var dlaswp = require( '@stdlib/lapack-base-dlaswp' );
Perform a series of row interchanges on an input matrix A
using pivot indices stored in IPIV
.
var Int32Array = require( '@stdlib/array-int32' );
var Float64Array = require( '@stdlib/array-float64' );
var A = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] ); // => [ [ 1.0, 2.0 ], [ 3.0, 4.0 ], [ 5.0, 6.0 ] ]
var IPIV = new Int32Array( [ 2, 0, 1 ] );
dlaswp( 'row-major', 2, A, 2, 0, 2, IPIV, 1 );
// A => <Float64Array>[ 3.0, 4.0, 1.0, 2.0, 5.0, 6.0 ]
The function has the following parameters:
- order: storage layout.
-
N: number of columns in
A
. -
A: input matrix stored in linear memory as a
Float64Array
. -
LDA: stride of the first dimension of
A
(a.k.a., leading dimension of the matrixA
). -
k1: index of first row to interchange when
incx
is positive and the index of the last row to interchange whenincx
is negative. -
k2: index of last row to interchange when
incx
is positive and the index of the first row to interchange whenincx
is negative. -
IPIV: vector of pivot indices as an
Int32Array
. Must contain at leastk1+(k2-k1)*abs(incx)
elements. Only the elements in positionsk1
throughk1+(k2-k1)*abs(incx)
are accessed. -
incx: increment between successive values of
IPIV
. Elements fromIPIV
are accessed according toIPIV[k1+(k-k1)*abs(incx)] = j
, thus implying that rowsk
andj
should be interchanged. Ifincx
is negative, the pivots are applied in reverse order.
The sign of the increment parameter incx
determines the order in which pivots are applied. For example, to apply pivots in reverse order,
var Int32Array = require( '@stdlib/array-int32' );
var Float64Array = require( '@stdlib/array-float64' );
var A = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] ); // => [ [ 1.0, 2.0 ], [ 3.0, 4.0 ], [ 5.0, 6.0 ] ]
var IPIV = new Int32Array( [ 2, 0, 1 ] );
dlaswp( 'row-major', 2, A, 2, 0, 2, IPIV, -1 );
// A => <Float64Array>[ 3.0, 4.0, 1.0, 2.0, 5.0, 6.0 ]
To perform strided access over IPIV
, provide an abs(incx)
value greater than one. For example, to access every other element in IPIV
,
var Int32Array = require( '@stdlib/array-int32' );
var Float64Array = require( '@stdlib/array-float64' );
var A = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] ); // => [ [ 1.0, 2.0 ], [ 3.0, 4.0 ], [ 5.0, 6.0 ] ]
var IPIV = new Int32Array( [ 2, 999, 0, 999, 1 ] );
dlaswp( 'row-major', 2, A, 2, 0, 2, IPIV, 2 );
// A => <Float64Array>[ 3.0, 4.0, 1.0, 2.0, 5.0, 6.0 ]
Note that indexing is relative to the first index. To introduce an offset, use typed array
views.
var Int32Array = require( '@stdlib/array-int32' );
var Float64Array = require( '@stdlib/array-float64' );
// Initial arrays...
var A0 = new Float64Array( [ 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] );
var IPIV0 = new Int32Array( [ 0, 2, 0, 1] );
// Create offset views...
var A1 = new Float64Array( A0.buffer, A0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var IPIV1 = new Int32Array( IPIV0.buffer, IPIV0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
dlaswp( 'row-major', 2, A1, 2, 0, 2, IPIV1, 1 );
// A0 => <Float64Array>[ 0.0, 3.0, 4.0, 1.0, 2.0, 5.0, 6.0 ]
Performs a series of row interchanges on the matrix A
using pivot indices stored in IPIV
and alternative indexing semantics.
var Int32Array = require( '@stdlib/array-int32' );
var Float64Array = require( '@stdlib/array-float64' );
var A = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] ); // => [ [ 1.0, 2.0 ], [ 3.0, 4.0 ], [ 5.0, 6.0 ] ]
var IPIV = new Int32Array( [ 2, 0, 1 ] );
dlaswp.ndarray( 2, A, 2, 1, 0, 0, 2, 1, IPIV, 1, 0 );
// A => <Float64Array>[ 3.0, 4.0, 1.0, 2.0, 5.0, 6.0 ]
The function has the following additional parameters:
-
N: number of columns in
A
. -
A: input matrix stored in linear memory as a
Float64Array
. -
sa1: stride of the first dimension of
A
. -
sa2: stride of the second dimension of
A
. -
oa: starting index for
A
. -
k1: index of first row to interchange when
inck
is positive and the index of the last row to interchange wheninck
is negative. -
k2: index of last row to interchange when
inck
is positive and the index of the first row to interchange wheninck
is negative. - inck: direction in which to apply pivots (-1 to apply pivots in reverse order; otherwise, apply in provided order).
-
IPIV: vector of pivot indices as an
Int32Array
. -
si: index increment for
IPIV
. -
oi: starting index for
IPIV
.
While typed array
views mandate a view offset based on the underlying buffer, the offset parameters support indexing semantics based on starting indices. For example,
var Int32Array = require( '@stdlib/array-int32' );
var Float64Array = require( '@stdlib/array-float64' );
var A = new Float64Array( [ 0.0, 0.0, 0.0, 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] );
var IPIV = new Int32Array( [ 0, 0, 2, 0, 1 ] );
dlaswp.ndarray( 2, A, 2, 1, 4, 0, 2, 1, IPIV, 1, 2 );
// A => <Float64Array>[ 0.0, 0.0, 0.0, 0.0, 3.0, 4.0, 1.0, 2.0, 5.0, 6.0 ]
- Both functions access
k2-k1+1
elements fromIPIV
. - While
dlaswp
conflates the order in which pivots are applied with the order in which elements inIPIV
are accessed, thendarray
method delineates control of those behaviors with separate parametersinck
andsi
. -
dlaswp()
corresponds to the LAPACK level 1 functiondlaswp
.
var Float64Array = require( '@stdlib/array-float64' );
var Int32Array = require( '@stdlib/array-int32' );
var ndarray2array = require( '@stdlib/ndarray-base-to-array' );
var dlaswp = require( '@stdlib/lapack-base-dlaswp' );
// Specify matrix meta data:
var shape = [ 4, 2 ];
var strides = [ 1, 4 ];
var offset = 0;
var order = 'column-major';
// Create a matrix stored in linear memory:
var A = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ] );
console.log( ndarray2array( A, shape, strides, offset, order ) );
// Define a vector of pivot indices:
var IPIV = new Int32Array( [ 2, 0, 3, 1 ] );
// Interchange rows:
dlaswp( order, shape[ 1 ], A, strides[ 1 ], 0, shape[ 0 ]-1, IPIV, 1 );
console.log( ndarray2array( A, shape, strides, offset, order ) );
npm install @stdlib/lapack-base-dlaswp
TODO
TODO.
TODO
TODO
TODO
TODO
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
See LICENSE.
Copyright © 2016-2024. The Stdlib Authors.