@stdlib/math-base-special-gcd
TypeScript icon, indicating that this package has built-in type declarations

0.3.0 • Public • Published
About stdlib...

We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.

The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.

When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.

To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!

gcd

NPM version Build Status Coverage Status

Compute the greatest common divisor (gcd).

The greatest common divisor (gcd) of two non-zero integers a and b is the largest positive integer which divides both a and b without a remainder. The gcd is also known as the greatest common factor (gcf), highest common factor (hcf), highest common divisor, and greatest common measure (gcm).

Installation

npm install @stdlib/math-base-special-gcd

Usage

var gcd = require( '@stdlib/math-base-special-gcd' );

gcd( a, b )

Computes the greatest common divisor (gcd).

var v = gcd( 48, 18 );
// returns 6

If both a and b are 0, the function returns 0.

var v = gcd( 0, 0 );
// returns 0

Both a and b must have integer values; otherwise, the function returns NaN.

var v = gcd( 3.14, 18 );
// returns NaN

v = gcd( 48, 3.14 );
// returns NaN

v = gcd( NaN, 18 );
// returns NaN

v = gcd( 48, NaN );
// returns NaN

Examples

var discreteUniform = require( '@stdlib/random-array-discrete-uniform' );
var gcd = require( '@stdlib/math-base-special-gcd' );

var a = discreteUniform( 100, 0, 50 );
var b = discreteUniform( a.length, 0, 50 );

var i;
for ( i = 0; i < a.length; i++ ) {
    console.log( 'gcd(%d,%d) = %d', a[ i ], b[ i ], gcd( a[ i ], b[ i ] ) );
}

C APIs

Usage

#include "stdlib/math/base/special/gcd.h"

stdlib_base_gcd( a, b )

Computes the greatest common divisor (gcd).

double v = stdlib_base_gcd( 48.0, 18.0 );
// returns 6.0

The function accepts the following arguments:

  • a: [in] double input value.
  • b: [in] double input value.
double stdlib_base_gcd( const double a, const double b );

Examples

#include "stdlib/math/base/special/gcd.h"
#include <stdio.h>

int main( void ) {
    const double a[] = { 24.0, 32.0, 48.0, 116.0, 33.0 };
    const double b[] = { 12.0, 6.0, 15.0, 52.0, 22.0 };

    double out;
    int i;
    for ( i = 0; i < 5; i++ ) {
        out = stdlib_base_gcd( a[ i ], b[ i ] );
        printf( "gcd(%lf, %lf) = %lf\n", a[ i ], b[ i ], out );
    }
}

References

  • Stein, Josef. 1967. "Computational problems associated with Racah algebra." Journal of Computational Physics 1 (3): 397–405. doi:10.1016/0021-9991(67)90047-2.

See Also


Notice

This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.

For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.

Community

Chat


License

See LICENSE.

Copyright

Copyright © 2016-2024. The Stdlib Authors.

Package Sidebar

Install

npm i @stdlib/math-base-special-gcd

Homepage

stdlib.io

Weekly Downloads

4,178

Version

0.3.0

License

Apache-2.0

Unpacked Size

49.3 kB

Total Files

18

Last publish

Collaborators

  • stdlib-bot
  • kgryte
  • planeshifter
  • rreusser