About stdlib...
We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.
The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.
When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.
To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!
Student's t distribution constructor.
npm install @stdlib/stats-base-dists-t-ctor
var T = require( '@stdlib/stats-base-dists-t-ctor' );
Returns a Student's t distribution object.
var t = new T();
var mu = t.mean;
// returns NaN
By default, v = 1.0
. To create a distribution having a different degrees of freedom v
, provide a parameter value.
var t = new T( 4.0 );
var mu = t.mean;
// returns 0.0
A Student's t distribution object has the following properties and methods...
Degrees of freedom of the distribution. v
must be a positive number.
var t = new T( 2.0 );
var v = t.v;
// returns 2.0
t.v = 3.0;
v = t.v;
// returns 3.0
Returns the differential entropy.
var t = new T( 4.0 );
var entropy = t.entropy;
// returns ~1.682
Returns the excess kurtosis.
var t = new T( 4.0 );
var kurtosis = t.kurtosis;
// returns Infinity
Returns the expected value.
var t = new T( 4.0 );
var mu = t.mean;
// returns 0.0
Returns the median.
var t = new T( 4.0 );
var median = t.median;
// returns 0.0
Returns the mode.
var t = new T( 4.0 );
var mode = t.mode;
// returns 0.0
Returns the skewness.
var t = new T( 4.0 );
var skewness = t.skewness;
// returns 0.0
Returns the standard deviation.
var t = new T( 4.0 );
var s = t.stdev;
// returns ~1.414
Returns the variance.
var t = new T( 4.0 );
var s2 = t.variance;
// returns 2.0
Evaluates the cumulative distribution function (CDF).
var t = new T( 2.0 );
var y = t.cdf( 0.5 );
// returns ~0.667
Evaluates the natural logarithm of the cumulative distribution function (CDF).
var t = new T( 2.0 );
var y = t.logcdf( 0.5 );
// returns ~-0.405
Evaluates the natural logarithm of the probability density function (PDF).
var t = new T( 2.0 );
var y = t.logpdf( 0.8 );
// returns ~-1.456
Evaluates the probability density function (PDF).
var t = new T( 2.0 );
var y = t.pdf( 0.8 );
// returns ~0.233
Evaluates the quantile function at probability p
.
var t = new T( 2.0 );
var y = t.quantile( 0.5 );
// returns 0.0
y = t.quantile( 1.9 );
// returns NaN
var T = require( '@stdlib/stats-base-dists-t-ctor' );
var t = new T( 2.0 );
var mu = t.mean;
// returns 0.0
var mode = t.mode;
// returns 0.0
var s2 = t.variance;
// returns Infinity
var y = t.cdf( 0.8 );
// returns ~0.746
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
See LICENSE.
Copyright © 2016-2024. The Stdlib Authors.