body-measurement-ai
TypeScript icon, indicating that this package has built-in type declarations

1.0.1 • Public • Published

Body Measurement AI

body-measurement-ai is a lightweight package that leverages TensorFlow.js and PoseNet to estimate body measurements (shoulder width, hip width, and height) from a live video feed. This package can be easily integrated into React and Next.js applications to provide accurate body measurements for various applications like clothing size recommendations.

Features

  • Pose Detection: Uses PoseNet to detect key points on the human body from a live video feed.
  • Real-Time Measurements: Estimates shoulder width, hip width, and height in real-time.
  • Simple Integration: Easily integrate with React or Next.js apps.

Installation

To install the package, use NPM or Yarn:

npm install body-measurement-ai

or

yarn add body-measurement-ai

Usage

Basic Setup in React/Next.js

Here is an example of how to use body-measurement-ai in a React or Next.js application:

import React, { useEffect, useRef, useState } from 'react';
import { setupCamera, loadPosenet, detectPose, PoseResult } from 'body-measurement-ai';

const BodyMeasurementComponent: React.FC = () => {
  const videoRef = useRef<HTMLVideoElement>(null); // Reference to the video element
  const [result, setResult] = useState<PoseResult | null>(null); // Store pose results or errors

  useEffect(() => {
    const setup = async () => {
      if (videoRef.current) {
        // Setup the camera
        const cameraResult = await setupCamera(videoRef.current);
        if ('success' in cameraResult && !cameraResult.success) {
          console.error(cameraResult.message); // Handle camera setup errors
          return;
        }

        // Load PoseNet model
        const netResult = await loadPosenet();
        if ('success' in netResult && !netResult.success) {
          console.error(netResult.message); // Handle PoseNet model load errors
          return;
        }

        // Start pose detection and updating measurements every second
        setInterval(async () => {
          const poseResult = await detectPose(videoRef.current!, netResult);
          if ('success' in poseResult && !poseResult.success) {
            console.error(poseResult.message); // Handle pose detection errors
          } else {
            setResult(poseResult); // Update the measurement result
          }
        }, 1000); // Run every 1 second
      }
    };

    setup(); // Initialize the camera and model when the component mounts
  }, []);

  return (
    <div>
      <h1>AI Body Measurement Tool</h1>
      <video ref={videoRef} width="640" height="480" autoPlay muted></video> {/* Video element for webcam */}
      {result && 'success' in result && !result.success ? (
        <p>Error: {result.message}</p> // Display error messages if any
      ) : result ? (
        <div>
          <p>Shoulder Width: {result.shoulderWidth}px</p> {/* Display shoulder width */}
          <p>Hip Width: {result.hipWidth}px</p> {/* Display hip width */}
          <p>Height: {result.height}px</p> {/* Display height */}
        </div>
      ) : null}
    </div>
  );
};

export default BodyMeasurementComponent;

Functions

  1. setupCamera(video: HTMLVideoElement): Promise<HTMLVideoElement | ErrorResult>

    • Sets up the user's webcam and returns the video element with the live stream.
    • Handles potential errors, such as permission denial or device issues.
  2. loadPosenet(): Promise<posenet.PoseNet | ErrorResult>

    • Loads the PoseNet model used for pose detection.
    • Returns either the loaded model or an error if something goes wrong.
  3. detectPose(video: HTMLVideoElement, net: posenet.PoseNet): Promise<PoseResult>

    • Detects key points from the video stream and calculates shoulder width, hip width, and height.
    • Returns an object with the measurements or an error if detection fails.

Example Error Handling

All functions return either a success result or an error result. Here’s how to handle errors effectively:

const cameraResult = await setupCamera(videoRef.current);
if ('success' in cameraResult && !cameraResult.success) {
  console.error(cameraResult.message); // Log or display the error message
  return;
}

Types

  • Measurements: Object containing the body measurements.

    interface Measurements {
      shoulderWidth: number;
      hipWidth: number;
      height: number;
    }
  • ErrorResult: Object returned when an error occurs during camera setup, model loading, or pose detection.

    interface ErrorResult {
      success: false;
      message: string;
    }
  • PoseResult: Union type that either contains Measurements or ErrorResult to ensure robust error handling.

    type PoseResult = Measurements | ErrorResult;

Example PoseResult Object

If the pose detection is successful:

{
  shoulderWidth: 300,
  hipWidth: 250,
  height: 600
}

If an error occurs:

{
  success: false,
  message: "Pose estimation failed. Could not detect key points."
}

Running Locally

You can run the project locally using a simple local server such as http-server.

  1. Build the project:

    npm run build
  2. Start a local server:

    npx http-server
  3. Navigate to http://localhost:8080 in your browser to see the body measurement tool in action.

License

This project is licensed under the MIT License. See the LICENSE file for details.

Dependencies (2)

Dev Dependencies (2)

Package Sidebar

Install

npm i body-measurement-ai

Weekly Downloads

0

Version

1.0.1

License

MIT

Unpacked Size

23.2 kB

Total Files

7

Last publish

Collaborators

  • jovialp