English | 中文
DolphinDB JavaScript API is a JavaScript library that encapsulates the ability to operate the DolphinDB database, such as: connecting to the database, executing scripts, calling functions, uploading variables, etc.
https://www.npmjs.com/package/dolphindb
- Use WebSocket to communicate with DolphinDB database, exchange data in binary format, and support real-time push of streaming data
- Support running in browser environment and Node.js environment
- Use TypedArray such as Int32Array in JavaScript to process binary data, with high performance
- Support serialized upload of up to 2GB of data with a single call, and the amount of downloaded data is not limited
Save the following content to the example.html
file, open it with a browser and run it. F12 opens the debugging console to see the log.
<!doctype html>
<html>
<head>
<title>DolphinDB</title>
<meta charset='utf-8' />
</head>
<body>
<script type="module">
import { DDB } from 'https://cdn.dolphindb.cn/assets/api.js'
let ddb = new DDB('ws://127.0.0.1:8848')
await ddb.connect()
console.log(
await ddb.eval('1 + 1')
)
</script>
</body>
</html>
1.1. Install the latest version of Node.js and browser on the machine.
- windows: https://nodejs.org/en/download/current/
- linux: https://github.com/nodesource/distributions?tab=readme-ov-file#debian-and-ubuntu-based-distributions
1.2. (Optional) Create a new project using the following command. If you already have a project, you can skip this step.
bash mkdir dolphindb-example cd dolphindb-example npm init --yes
1.3. Open the package.json file with an editor and add a line "type": "module" below "main": "./index.js"
. This will enable ECMAScript modules. You can use import { DDB } from 'dolphindb'
to import npm package.
1.4. Install the npm package in the project.
bash npm install dolphindb
// 2.1 Use the following method to import in the browser environment
import { DDB } from 'dolphindb/browser.js'
// 2.1 Use the following method to import in Node.js environment
// import { DDB } from 'dolphindb'
// The import method for existing projects using CommonJS modules is const { DDB } = await import('dolphindb')
// 2.2 Use the WebSocket URL to initialize the connection to the DolphinDB instance (without establishing an actual network connection)
let ddb = new DDB('ws://127.0.0.1:8848')
// Use HTTPS encryption
// let ddb = new DDB('wss://dolphindb.com')
// 2.3 Establish a connection to DolphinDB (requires DolphinDB database version to be no less than 1.30.16 or 2.00.4)
await ddb.connect()
let ddb = new DDB('ws://127.0.0.1:8848')
// Encrypt with HTTPS
let ddbsecure = new DDB('wss://dolphindb.com', {
// Whether to log in automatically after establishing a connection, default `true`
autologin: true,
// DolphinDB username, default `'admin'`
username: 'admin',
// DolphinDB password, default `'123456'`
password: '123456',
// set python session flag, default `false`
python: false,
// set sql standrd flag, use the SqlStandard enum to pass arguments, default `DolphinDB`
// sql: SqlStandard.MySQL,
// sql: SqlStandard.Oracle,
// After setting this option, the database connection is only used for streaming data. For details, see `5. Streaming Data`
streaming: undefined
})
import { DdbInt } from 'dolphindb'
const result = await ddb.call('add', [new DdbInt(1), new DdbInt(1)])
// TypeScript: const result = await ddb.call<DdbInt>('add', [new DdbInt(1), new DdbInt(1)])
console.log(result.value === 2) // true
In the preceding example, two parameters (new DdbInt(1)
, corresponding to the INT type in DolphinDB) are uploaded to the DolphinDB database as parameters of the add function, then the result of the function call is received.
<DdbInt>
is used by TypeScript to infer the type of the return value
- result is a
DdbInt
, which is also aDdbObj<number>
- result.form is a
DdbForm.scalar
- result.type is a
DdbType.int
- result.value is data of
number
type in JavaScript (the value range and precision of INT can be accurately represented by JavaScriptnumber
type)
It is recommended to first understand the concepts related to TypedArray in JavaScript, you can refer to:
- https://stackoverflow.com/questions/42416783/where-to-use-arraybuffer-vs-typed-array-in-javascript
- https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/TypedArray
/** Can represent all data types in DolphinDB databases */
class DdbObj <T extends DdbValue = DdbValue> {
/** is it little endian */
le: boolean
/** data form https://www.dolphindb.cn/cn/help/DataTypesandStructures/DataForms/index.html */
form: DdbForm
/** data type https://www.dolphindb.cn/cn/help/DataTypesandStructures/DataTypes/index.html */
type: DdbType
/** consumed length in buf parsed */
length: number
/** table name / column name */
name?: string
/**
Lowest dimension
- vector: rows = n, cols = 1
- pair: rows = 2, cols = 1
- matrix: rows = n, cols = m
- set: the same as vector
- dict: include keys, values vector
- table: the same as matrix
*/
rows?: number
/** 2nd dimension */
cols?: number
/** the actual data. Different DdbForm, DdbType use different types in DdbValue to represent actual data */
value: T
/** raw binary data, only top-level objects generated by parse_message when parse_object is false have this attribute */
buffer?: Uint8Array
constructor (data: Partial<DdbObj> & { form: DdbForm, type: DdbType, length: number }) {
Object.assign(this, data)
}
}
class DdbInt extends DdbObj<number> {
constructor (value: number) {
super({
form: DdbForm.scalar,
type: DdbType.int,
length: 4,
value
})
}
}
// ... There are also many utility classes, such as DdbString, DdbLong, DdbDouble, DdbVectorDouble, DdbVectorAny, etc.
type DdbValue =
null | boolean | number | [number, number] | bigint | string | string[] |
Uint8Array | Int16Array | Int32Array | Float32Array | Float64Array | BigInt64Array | Uint8Array[] |
DdbObj[] | DdbFunctionDefValue | DdbSymbolExtendedValue
enum DdbForm {
scalar = 0,
vector = 1,
pair = 2,
matrix = 3,
set = 4,
dict = 5,
table = 6,
chart = 7,
chunk = 8,
}
enum DdbType {
void = 0,
bool = 1,
char = 2,
short = 3,
int = 4,
long = 5,
// ...
timestamp = 12,
// ...
double = 16,
symbol = 17,
string = 18,
// ...
}
If there is no shortcut class, you can also specify form and type to manually create a DdbObj object:
// Created by the DdbDateTime shortcut class
new DdbDateTime(1644573600)
// Equivalent to manually creating an object of form = scalar, type = datetime through DdbObj
const obj = new DdbObj({
form: DdbForm.scalar,
type: DdbType.datetime,
value: 1644573600,
length: 0
})
// The corresponding type and value of value in js can refer to the result returned by ddb.eval (see the `eval` method declaration below)
const obj = await ddb.eval('2022.02.11 10:00:00')
console.log(obj.form === DdbForm.scalar)
console.log(obj.type === DdbType.datetime)
console.log(obj.value)
// Another example is to create a set
// refer to ddb.eval
// const obj = await ddb.eval('set([1, 2, 3])')
// console.log(obj.value)
const obj = new DdbObj({
form: DdbForm.set,
type: DdbType.int,
value: Int32Array.of(1, 2, 3),
length: 0
})
// It's easier to use shortcut classes
const obj = new DdbSetInt(
new Set([1, 2, 3])
)
For the NULL object in the form of scalar, the value corresponding to DdbObj is null in JavaScript:
;(await ddb.eval('double()')).value === null
// create NULL object
new DdbInt(null)
new DdbDouble(null)
async call <T extends DdbObj> (
/** function name */
func: string,
/** function arguments (The incoming native string and boolean will be automatically converted to DdbObj<string> and DdbObj<boolean>) */
args?: (DdbObj | string | boolean)[] = [ ],
/** calling options */
options?: {
/** Urgent flag. Use urgent worker to execute to prevent being blocked by other jobs */
urgent?: boolean
/** When the node alias is set, the function is sent to the corresponding node in the cluster for execution (using the rpc method in DolphinDB) */
node?: string
/** When setting multiple node aliases, send them to the corresponding multiple nodes in the cluster for execution (using the pnodeRun method in DolphinDB) */
nodes?: string[]
/** It must be passed when setting the node parameter, the function type needs to be specified, and it is not passed in other cases */
func_type?: DdbFunctionType
/** It may be passed when setting the nodes parameter, otherwise may not be passed */
add_node_alias?: boolean
} = { }
): Promise<T>
const result = await ddb.eval(
'def foo (a, b) {\n' +
' return a + b\n' +
'}\n' +
'foo(1l, 1l)\n'
)
// TypeScript:
// import type { DdbLong } from 'dolphindb'
// const result = await ddb.eval<DdbLong>(...)
console.log(result.value === 2n) // true
In the preceding example, a script is uploaded through a string to the DolphinDB database for execution, and the execution result of the last statement foo(1l, 1l)
is received.
<DdbLong>
is used by TypeScript to infer the type of the return value
- result is a
DdbLong
, which is also aDdbObj<bigint>
- result.form is
DdbForm.scalar
- result.type is
DdbType.long
- result.value is the native
bigint
in JavaScript (the precision of long cannot be accurately represented by JavaScript number, but it can be represented by bigint)
As long as the WebSocket connection is not disconnected, the custom function foo
will always exist in the subsequent session and can be reused, for example, you can use await ddb.call<DdbInt>('foo', [new DdbInt(1), new DdbInt(1)])
to call this custom function
async eval <T extends DdbObj> (
/** the script to execute */
script: string,
/** calling options */
options: {
/** Urgent flag. Use urgent worker to execute to prevent being blocked by other jobs */
urgent?: boolean
} = { }
): Promise<T>
import { DdbVectorDouble } from 'dolphindb'
let a = new Array(10000)
a.fill(1.0)
ddb.upload(['bar1', 'bar2'], [new DdbVectorDouble(a), new DdbVectorDouble(a)])
In the preceding example, two variables, bar1
and bar2
, are uploaded, and the variable value is a double vector of length 10000
As long as the WebSocket connection is on, variables bar1
and bar2
will always exist in subsequent session and can be reused
async upload (
/** variable names */
vars: string[],
/** variable values */
args: (DdbObj | string | boolean)[]
): Promise<void>
import { nulls, DdbInt, timestamp2str, DdbVectorSymbol, DdbTable, DdbVectorDouble } from 'dolphindb'
// Format timestamp in DolphinDB as string
timestamp2str(
(
await ddb.call('now', [false])
// TypeScript: await ddb.call<DdbObj<bigint>>('now', [false])
).value
) === '2022.02.23 17:23:13.494'
// create symbol vector
new DdbVectorSymbol(['aaa', 'aaa', 'aaa', 'aaa', 'aaa', 'bbb'])
// Create a double vector with NULL values using JavaScript native arrays
new DdbVectorDouble([0.1, null, 0.3])
// More efficient and memory efficient double vector creation using JavaScript TypedArray
let av = new Float64Array(3)
av[0] = 0.1
av[1] = nulls.double
av[2] = 0.3
new DdbVectorDouble(av)
// create DdbTable
new DdbTable(
[
new DdbVectorDouble([0.1, 0.2, null], 'col0'),
new DdbVectorSymbol(['a', 'b', 'c'], 'col1')
],
'mytable'
)
// New Streaming Data Connection Configuration
let sddb = new DDB('ws://192.168.0.43:8800', {
autologin: true,
username: 'admin',
password: '123456',
streaming: {
table: 'Streaming table name to subscribe to',
// Streaming data processing callback, the type of message is StreamingData
handler (message) {
console.log(message)
}
}
})
// Establish connection
await sddb.connect()
The streaming data received after the connection is established will be used as the message parameter of the handler. The type of the message is StreamingData, as follows:
export interface StreamingParams {
table: string
action?: string
handler (message: StreamingData): any
}
export interface StreamingData extends StreamingParams {
/**
The time the server sent the message (nano seconds since epoch)
std::chrono::system_clock::now().time_since_epoch() / std::chrono::nanoseconds(1)
*/
time: bigint
/** message id */
id: bigint
colnames: string[]
/** Subscription topic, which is the name of a subscription.
It is a string consisting of the alias of the node where the subscription table is located, the stream data table name, and the subscription task name (if actionName is specified), separated by `/`
*/
topic: string
/** Streaming data, the type is any vector, each element of which corresponds to a column (without name) of the subscribed table, and the content in the column (DdbObj<DdbVectorValue>) is the new data value */
data: DdbObj<DdbVectorObj[]>
/** Number of new streaming data rows */
rows: number
window: {
/** The establishment of the connection starts offset = 0, and gradually increases as the window moves */
offset: number
/** sum of segment.row in segments */
rows: number
/** An array of data received each time */
segments: DdbObj<DdbVectorObj[]>[]
}
/** After successfully subscribed, if the subsequently pushed message is parsed incorrectly, the error will be set and the handler will be called. */
error?: Error
}
# Install the latest version of nodejs
# https://nodejs.org/en/download/current/
# Install the pnpm package manager
npm install -g pnpm
git clone https://github.com/dolphindb/api-javascript.git
cd api-javascript
# Install project dependencies
pnpm install
# Copy .vscode/settings.template.json to .vscode/settings.json
cp .vscode/settings.template.json .vscode/settings.json
# Refer to scripts in package.json
# Construct
pnpm run build
#lint
pnpm run lint
# test
pnpm run test
# scan entries
pnpm run scan
# Manually complete untranslated entries
# Run the scan again to update the dictionary file dict.json
pnpm run scan