Probability Mass Function
Geometric distribution probability mass function (PMF).
The probability mass function (PMF) for a geometric random variable is
where p
is the success probability. The random variable X
denotes the number of failures until the first success in a sequence of independent Bernoulli trials.
Installation
$ npm install distributions-geometric-pmf
For use in the browser, use browserify.
Usage
var pmf = ;
pmf( x[, options] )
Evaluates the probability mass function (PMF) for the geometric distribution. x
may be either a number
, an array
, a typed array
, or a matrix
.
var matrix =matoutxi;out = ;// returns 0.25out = ;// returns 0out = ;// returns 0x = 0 1 2 3 4 5 ;out = ;// returns [ 0.5, 0.25, 0.125, 0.0625, 0.0312, 0.0156 ]x = x ;out = ;// returns Float64Array( [0.5,0.25,0.125,0.0625,0.0312,0.0156] )x = 6 ;for i = 0; i < 6; i++x i = i;mat = ;/*[ 0 12 44 5 ]*/out = ;/*[ 0.5 0.250.125 0.06250.0312 0.0156 ]*/
The function accepts the following options
:
- p: success probability. Default:
0.5
. - accessor: accessor
function
for accessingarray
values. - dtype: output
typed array
ormatrix
data type. Default:float64
. - copy:
boolean
indicating if thefunction
should return a new data structure. Default:true
. - path: deepget/deepset key path.
- sep: deepget/deepset key path separator. Default:
'.'
.
A geometric distribution is a function of one parameter: p
(success probability). By default, p
is equal to 0.5
. To adjust it, set the corresponding option.
var x = 0 1 2 3 4 5 ;var out =;// returns [ 0.1, 0.09, 0.081, 0.0729, 0.0656, 0.059 ]
For non-numeric arrays
, provide an accessor function
for accessing array
values.
var data =001122334455;{return d 1 ;}var out =;// returns [ 0.5, 0.25, 0.125, 0.0625, 0.0312, 0.0156 ]
To deepset an object array
, provide a key path and, optionally, a key path separator.
var data ='x':00'x':11'x':22'x':33'x':44'x':55;var out =;/*[{'x':[0,0.5]},{'x':[1,0.25]},{'x':[2,0.125]},{'x':[3,0.0625]},{'x':[4,0.0312]},{'x':[5,0.0156]}]*/var bool = data === out ;// returns true
By default, when provided a typed array
or matrix
, the output data structure is float64
in order to preserve precision. To specify a different data type, set the dtype
option (see matrix
for a list of acceptable data types).
var x out;x = 01234 ;out =;// returns Float32Array( [0.5,0.25,0.125,0.0625,0.0312] )// Works for plain arrays, as well...out =;// returns Float32Array( [0.5,0.25,0.125,0.0625,0.0312] )
By default, the function returns a new data structure. To mutate the input data structure (e.g., when input values can be discarded or when optimizing memory usage), set the copy
option to false
.
var boolmatoutxi;x = 0 1 2 3 4 5 ;out =;// returns [ 0.5, 0.25, 0.125, 0.0625, 0.0312, 0.0156 ]bool = x === out ;// returns truex = 6 ;for i = 0; i < 6; i++x i = i;mat = ;/*[ 0 12 34 5 ]*/out =;/*[ 0.5 0.250.125 0.06250.0312 0.0156 ]*/bool = mat === out ;// returns true
Notes
-
If an element is not a numeric value, the evaluated PMF is
NaN
.var data out;out = ;// returns NaNout = ;// returns NaNout = ;// returns NaNout = ;// returns [ NaN, NaN, NaN ]{return dx;}data ='x':true'x':'x':{}'x':null;out =;// returns [ NaN, NaN, NaN, NaN ]out =;/*[{'x':NaN},{'x':NaN},{'x':NaN,{'x':NaN}]*/ -
Be careful when providing a data structure which contains non-numeric elements and specifying an
integer
output data type, asNaN
values are cast to0
.var out =;// returns Int8Array( [0,0,0] );
Examples
var pmf =matrix = ;var datamatouttmpi;// Plain arrays...data = 10 ;for i = 0; i < datalength; i++data i = i;out = ;// Object arrays (accessors)...{return dx;}for i = 0; i < datalength; i++data i ='x': data i;out =;// Deep set arrays...for i = 0; i < datalength; i++data i ='x': i data i x;out =;// Typed arrays...data = 10 ;for i = 0; i < datalength; i++data i = i;out = ;// Matrices...mat = ;out = ;// Matrices (custom output data type)...out =;
To run the example code from the top-level application directory,
$ node ./examples/index.js
Tests
Unit
Unit tests use the Mocha test framework with Chai assertions. To run the tests, execute the following command in the top-level application directory:
$ make test
All new feature development should have corresponding unit tests to validate correct functionality.
Test Coverage
This repository uses Istanbul as its code coverage tool. To generate a test coverage report, execute the following command in the top-level application directory:
$ make test-cov
Istanbul creates a ./reports/coverage
directory. To access an HTML version of the report,
$ make view-cov
License
Copyright
Copyright © 2015. The Compute.io Authors.