Probability Density Function
Truncated normal distribution probability density function (PDF).
The distribution of a normally distributed random variable X
conditional on a < X < b
is a truncated normal distribution.
The probability density function (PDF) for a truncated normal random variable is
where Phi
and phi
denote the cumulative distribution function and density function of the normal distribution, respectively, mu
is the location and sigma > 0
is the scale parameter of the distribution. a
and b
are the minimum and maximum support.
Installation
$ npm install distributions-truncated-normal-pdf
For use in the browser, use browserify.
Usage
var pdf = ;
pdf( x[, options] )
Evaluates the probability density function (PDF) for the truncated normal distribution. x
may be either a number
, an array
, a typed array
, or a matrix
.
var matrix =matoutxi;out = ;// returns 0.242out = ;// returns 0.242x = 0 05 1 15 2 25 ;out = ;// returns [ ~0.399, ~0.352, ~0.242, 0.13, ~0.054, ~0.018 ]x = x ;out = ;// returns Float64Array( [~0.399,~0.352,~0.242,0.13,~0.054,~0.018] )x = 6 ;for i = 0; i < 6; i++x i = i*05;mat = ;/*[ 0 0.51 1.52 2.5 ]*/out = ;/*[ ~0.399 ~0.352~0.242 0.13~0.054 ~0.018 ]*/
The function accepts the following options
:
- a: minimum support. Default:
-Infinity
- b: maximum support. Default:
+Infinity
- mu: location parameter. Default:
0
. - sigma: scale parameter. Default:
1
. - accessor: accessor
function
for accessingarray
values. - dtype: output
typed array
ormatrix
data type. Default:float64
. - copy:
boolean
indicating if thefunction
should return a new data structure. Default:true
. - path: deepget/deepset key path.
- sep: deepget/deepset key path separator. Default:
'.'
.
A truncated normal distribution is a function of four parameters: a
and b
, the minimum and maximum support, mu
(location parameter) and sigma > 0
(scale parameter). By default, a = -Infinity
and b = +Infinity
, mu
is equal to 0
and sigma
is equal to 1
. To adjust either parameter, set the corresponding option.
var x = 0 05 1 15 2 25 ;var out =;// returns [ 0.13, ~0.161, ~0.189, ~0.207, ~0.214, ~0.207 ]
For non-numeric arrays
, provide an accessor function
for accessing array
values.
var data =001052131542525;{return d 1 ;}var out =;// returns [ ~0.399, ~0.352, ~0.242, 0.13, ~0.054, ~0.018 ]
To deepset an object array
, provide a key path and, optionally, a key path separator.
var data ='x':00'x':105'x':21'x':315'x':42'x':525;var out =;/*[{'x':[0,~0.399]},{'x':[1,~0.352]},{'x':[2,~0.242]},{'x':[3,0.13]},{'x':[4,~0.054]},{'x':[5,~0.018]}]*/var bool = data === out ;// returns true
By default, when provided a typed array
or matrix
, the output data structure is float64
in order to preserve precision. To specify a different data type, set the dtype
option (see matrix
for a list of acceptable data types).
var x out;x = 01234 ;out =;// returns Int32Array( [0,0,0,0,0] )// Works for plain arrays, as well...out =;// returns Uint8Array( [0,0,0,0,0] )
By default, the function returns a new data structure. To mutate the input data structure (e.g., when input values can be discarded or when optimizing memory usage), set the copy
option to false
.
var boolmatoutxi;x = 0 05 1 15 2 ;out =;// returns [ ~0.399, ~0.352, ~0.242, 0.13, ~0.054 ]bool = x === out ;// returns truex = 6 ;for i = 0; i < 6; i++x i = i*05;mat = ;/*[ 0 01 12 2 ]*/out =;/*[ ~0.399 ~0.399~0.242 ~0.242~0.054 ~0.054 ]*/bool = mat === out ;// returns true
Notes
-
If an element is not a numeric value, the evaluated PDF is
NaN
.var data out;out = ;// returns NaNout = ;// returns NaNout = ;// returns NaNout = ;// returns [ NaN, NaN, NaN ]{return dx;}data ='x':true'x':'x':{}'x':null;out =;// returns [ NaN, NaN, NaN, NaN ]out =;/*[{'x':NaN},{'x':NaN},{'x':NaN,{'x':NaN}]*/ -
Be careful when providing a data structure which contains non-numeric elements and specifying an
integer
output data type, asNaN
values are cast to0
.var out =;// returns Int8Array( [0,0,0] );
Examples
var pdf =matrix = ;var datamatouttmpi;// Plain arrays...data = 10 ;for i = 0; i < datalength; i++data i = -25 + i * 05;out = ;// Object arrays (accessors)...{return dx;}for i = 0; i < datalength; i++data i ='x': data i;out =;// Deep set arrays...for i = 0; i < datalength; i++data i ='x': i data i x;out =;// Typed arrays...data = 10 ;for i = 0; i < datalength; i++data i = -25 + i * 05;out = ;// Matrices...mat = ;out = ;// Matrices (custom output data type)...out =;
To run the example code from the top-level application directory,
$ node ./examples/index.js
Tests
Unit
Unit tests use the Mocha test framework with Chai assertions. To run the tests, execute the following command in the top-level application directory:
$ make test
All new feature development should have corresponding unit tests to validate correct functionality.
Test Coverage
This repository uses Istanbul as its code coverage tool. To generate a test coverage report, execute the following command in the top-level application directory:
$ make test-cov
Istanbul creates a ./reports/coverage
directory. To access an HTML version of the report,
$ make view-cov
License
Copyright
Copyright © 2016. The Compute.io Authors.