There has some OpenAI SDK such as Node.js、Python. But there isn't JavaScript SDK for Browser Environment. So the project is here!
The calling method is Fetch()
——standard native HTTP implementation on Web and Node.js. It is similar to curl
of shell.
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>easy-fetch-llm Demo</title>
</head>
<body>
System Prompt:<input id="system"> <br>
User Prompt:<input id="user"> <br>
<button id="send">send</button> <br>
Result:
<div id="result" style="background: oldlace; padding:20px;width:fit-content; "></div>
<script type="module" async>
import { EasyFetchLLM } from "https://unpkg.com/easy-fetch-llm";
const tongyi = {
url: 'https://dashscope.aliyuncs.com/compatible-mode/v1/chat/completions',
key: 'your-api-key',
model: 'qwen-plus',
}
const client = new EasyFetchLLM(tongyi)
document.querySelector('#send').onclick = async ()=>{
const system = document.querySelector('#system').value
const user = document.querySelector('#user').value
const result = document.querySelector('#result')
result.innerText = ''
client.Text2Text(system, user, result)
}
</script>
</body>
</html>
Then,run this html page by a http static server ,you will watch the streaming output in #result
div .
first,install this library :
npm install easy-fetch-llm
Next,write a file 'Text2Text.mjs' with content below:
import {EasyFetchLLM } from 'easy-fetch-llm'
const tongyi = {
url : 'https://dashscope.aliyuncs.com/compatible-mode/v1/chat/completions',
key : 'your-api-key',
model : 'qwen-turbo',
}
const client = new EasyFetchLLM(tongyi)
const system = 'your system prompt'
const user= 'your user prompt'
client.Text2Text(system,user,'node')
Then,run node Text2Text.mjs
. The console of Node.js will output the answer of LLM.