ipssm

1.0.4 • Public • Published

Compute IPSS-M and IPSS-M Risks on IWG-PM Cohort (Bernard et al, 2022 NJEM Evid)

npm version npm badge

ipssm (js)

Javascript/Node Package for the Molecular International Prognostic Scoring System (IPSS-M) for Myelodysplastic Syndromes.

Table of contents

inputs

📃 IPSS-M Publication

Bernard E, Tuechler H, Greenberg PL, Hasserjian RP, Arango Ossa JE et al. Molecular International Prognostic Scoring System for Myelodysplastic Syndromes, NEJM Evidence 2022.

🚀 Installation instructions

# Using npm
npm install ipssm

💥 IPSS-M Usage

🔥 Compute IPSS-M

Having a patient's data in a dictionary, you can compute the IPSS-M.

const { ipssm } from 'ipssm'

// Add patient data to an object with the following fields
const patientFields = {
  // Clinical Data
  BM_BLAST: 0,
  HB: 8.2,
  PLT: 239,
  // Optional IPSS-R fields
  ANC: 0.72,
  AGE: 63.5,
  // Cytogenetic Data 
  del5q: 0,
  del7_7q: 0,
  del17_17p: 0,
  complex: 0, 
  CYTO_IPSSR: 'Good',
  // Molecular Data
  TP53mut: 0,
  TP53maxvaf: 0,
  TP53loh: 0,
  MLL_PTD: 0,
  FLT3: 0,
  ASXL1: 1,
  CBL: 0,
  DNMT3A: 0,
  ETV6: 0,
  EZH2: 1,
  IDH2: 0,
  KRAS: 0,
  NPM1: 0,
  NRAS: 0,
  RUNX1: 1,
  SF3B1: 0,
  SRSF2: 0,
  U2AF1: 0,
  BCOR: 0,
  BCORL1: 0,
  CEBPA: 0,
  ETNK1: 0,
  GATA2: 0,
  GNB1: 0,
  IDH1: 0,
  NF1: 0,
  PHF6: 0,
  PPM1D: 0,
  PRPF8: 0,
  PTPN11: 0,
  SETBP1: 0,
  STAG2: 0,
  WT1: 0,
}

const ipssmResult = ipssm(patientFields)
console.log(ipssmResult)
// Result
{
  means: {
    riskScore: 0.09,
    riskCat: 'Moderate High',
    contributions: {...}
  },
  best: {
    riskScore: 0.09,
    riskCat: 'Moderate High',
    contributions: {...}
  },
  worst: {
    riskScore: 0.09,
    riskCat: 'Moderate High',
    contributions: {...}
  },
}

⚡ IPSS-R and IPSS-R (Age adjusted)

Additionally, you may find an implementation to compute the IPPS-R and IPSS-R (Age adjusted) in this module:

import { ipssr } from 'ipssm'

// using the same patient data
patientFields = {
  HB: 8.2,
  ANC: 0.72,
  PLT: 239,
  BM_BLAST: 0,
  CYTOVEC: 1,
  AGE: 63.5,
  ...
}

const ipssrResult = ipssr({
  hb: patientFields.HB,
  anc: patientFields.ANC,
  plt: patientFields.PLT,
  bmblast: patientFields.BM_BLAST,
  cytovec: patientFields.CYTOVEC,
  age: patientFields.AGE,
})

console.log(ipssrResult)

Which outputs a risk score (means), with a best and worst scenario risk score to account for missing genetic data.

// Result
{
    IPSSR_SCORE: 2.5,
    IPSSR: 'Low',
    IPSSRA_SCORE: 2.2563,
    IPSSRA: 'Low',
}

🎯 Annotating batch from CSV/Excel file

The following code will annotate a CSV file with the IPSS-M and IPSS-M Risks.

import { annotateFile } from 'ipssm'

const inputFile = './test/data/IPSSMexample.csv'
const outputFile = 'IPSSMexample.annotated.csv'

await annotateFile(inputFile, outputFile)

or with an excel file:

import { annotateFile } from 'ipssm'

const inputFile = './test/data/IPSSMexample.xlsx'
const outputFile = 'IPSSMexample.annotated.xlsx'

await annotateFile(inputFile, outputFile)

🦾 Using the command line interface

You can use the command line interface to annotate a file with patients, where each row is a patient and each column is a variable.

$  ipssm --help

Annotate a file of patients with IPSS-M and IPSS-R risk scores and categories.
It supports .csv, .tsv, .xlsx files.

Usage: ipssm <inputFile> <outputFile>

Positionals:
  inputFile   File to be annotated (rows: patients, columns: variables).[string]
  outputFile  Path for the annotated output file.                       [string]

Options:
      --version  Show version number                                   [boolean]
  -h, --help     Show help                                             [boolean]

🗒️ Input Variables Definition

Category Variable Explanation Variable Unit Possible Value
clinical Hemoglobin HB numerical, in g/dL [4-20]
clinical Platelets PLT numerical, in Giga/L [0-2000]
clinical Bone Marrow Blasts BM_BLAST numerical, in % [0-30]
clinical (only for IPSS-R) Absolute Neutrophil Count ANC numerical, in Giga/L [0-15]
clinical (only for IPSS-RA) Bone Marrow Blasts AGE numerical, in years [18-120]
cytogenetics Presence of del(5q) del5q binary 0/1
cytogenetics Presence of -7/del(7q) del7_7q binary 0/1
cytogenetics Presence of -17/del(17p) del17_17p binary 0/1
cytogenetics Complex karyotype complex binary 0/1
cytogenetics Cytogenetics Category CYTO_IPSSR categorical Very Good/Good/Intermediate/Poor/Very Poor
TP53 locus Number of TP53 mutations TP53mut categorical 0/1/2 or more
TP53 locus Maximum TP53 VAF TP53maxvaf numerical, between 0 and 1 [0-1]
TP53 locus Loss of heterozygosity at TP53 TP53loh binary 0/1
MLL and FLT3 mutations MLL PTD MLL_PTD binary 0/1
MLL and FLT3 mutations FLT3 ITD or TKD FLT3 binary 0/1
gene main effect ASXL1 ASXL1 binary 0/1/NA
gene main effect CBL CBL binary 0/1/NA
gene main effect DNMT3A DNMT3A binary 0/1/NA
gene main effect ETV6 ETV6 binary 0/1/NA
gene main effect EZH2 EZH2 binary 0/1/NA
gene main effect IDH2 IDH2 binary 0/1/NA
gene main effect KRAS KRAS binary 0/1/NA
gene main effect NPM1 NPM1 binary 0/1/NA
gene main effect NRAS NRAS binary 0/1/NA
gene main effect RUNX1 RUNX1 binary 0/1/NA
gene main effect SF3B1 SF3B1 binary 0/1/NA
gene main effect SRSF2 SRSF2 binary 0/1/NA
gene main effect U2AF1 U2AF1 binary 0/1/NA
gene residual BCOR binary 0/1/NA
gene residual BCORL1 binary 0/1/NA
gene residual CEBPA binary 0/1/NA
gene residual ETNK1 binary 0/1/NA
gene residual GATA2 binary 0/1/NA
gene residual GNB1 binary 0/1/NA
gene residual IDH1 binary 0/1/NA
gene residual NF1 binary 0/1/NA
gene residual PHF6 binary 0/1/NA
gene residual PPM1D binary 0/1/NA
gene residual PTPN11 binary 0/1/NA
gene residual PRPF8 binary 0/1/NA
gene residual SETBP1 binary 0/1/NA
gene residual STAG2 binary 0/1/NA
gene residual WT1 binary 0/1/NA

❓ Question

Any questions feel free to add an issue to this repo or to contact ElsaB.

Readme

Keywords

Package Sidebar

Install

npm i ipssm

Weekly Downloads

6

Version

1.0.4

License

MIT

Unpacked Size

538 kB

Total Files

19

Last publish

Collaborators

  • juanesarango