linked-list-typed
TypeScript icon, indicating that this package has built-in type declarations

2.0.0 • Public • Published

NPM GitHub top language npm eslint npm bundle size npm bundle size npm

What

Brief

This is a standalone Linked List data structure from the data-structure-typed collection. If you wish to access more data structures or advanced features, you can transition to directly installing the complete data-structure-typed package

How

install

npm

npm i linked-list-typed --save

yarn

yarn add linked-list-typed

snippet

text editor operation history

    const actions = [
      { type: 'insert', content: 'first line of text' },
      { type: 'insert', content: 'second line of text' },
      { type: 'delete', content: 'delete the first line' }
    ];
    const editorHistory = new DoublyLinkedList<{ type: string; content: string }>(actions);

    console.log(editorHistory.last?.type); // 'delete'
    console.log(editorHistory.pop()?.content); // 'delete the first line'
    console.log(editorHistory.last?.type); // 'insert'

Browser history

    const browserHistory = new DoublyLinkedList<string>();

    browserHistory.push('home page');
    browserHistory.push('search page');
    browserHistory.push('details page');

    console.log(browserHistory.last); // 'details page'
    console.log(browserHistory.pop()); // 'details page'
    console.log(browserHistory.last); // 'search page'

Use DoublyLinkedList to implement music player

    // Define the Song interface
    interface Song {
      title: string;
      artist: string;
      duration: number; // duration in seconds
    }

    class Player {
      private playlist: DoublyLinkedList<Song>;
      private currentSong: ReturnType<typeof this.playlist.getNodeAt> | undefined;

      constructor(songs: Song[]) {
        this.playlist = new DoublyLinkedList<Song>();
        songs.forEach(song => this.playlist.push(song));
        this.currentSong = this.playlist.head;
      }

      // Play the next song in the playlist
      playNext(): Song | undefined {
        if (!this.currentSong?.next) {
          this.currentSong = this.playlist.head; // Loop to the first song
        } else {
          this.currentSong = this.currentSong.next;
        }
        return this.currentSong?.value;
      }

      // Play the previous song in the playlist
      playPrevious(): Song | undefined {
        if (!this.currentSong?.prev) {
          this.currentSong = this.playlist.tail; // Loop to the last song
        } else {
          this.currentSong = this.currentSong.prev;
        }
        return this.currentSong?.value;
      }

      // Get the current song
      getCurrentSong(): Song | undefined {
        return this.currentSong?.value;
      }

      // Loop through the playlist twice
      loopThroughPlaylist(): Song[] {
        const playedSongs: Song[] = [];
        const initialNode = this.currentSong;

        // Loop through the playlist twice
        for (let i = 0; i < this.playlist.length * 2; i++) {
          playedSongs.push(this.currentSong!.value);
          this.currentSong = this.currentSong!.next || this.playlist.head; // Loop back to the start if needed
        }

        // Reset the current song to the initial song
        this.currentSong = initialNode;
        return playedSongs;
      }
    }

    const songs = [
      { title: 'Bohemian Rhapsody', artist: 'Queen', duration: 354 },
      { title: 'Hotel California', artist: 'Eagles', duration: 391 },
      { title: 'Shape of You', artist: 'Ed Sheeran', duration: 233 },
      { title: 'Billie Jean', artist: 'Michael Jackson', duration: 294 }
    ];
    let player = new Player(songs);
    // should play the next song
    player = new Player(songs);
    const firstSong = player.getCurrentSong();
    const nextSong = player.playNext();

    // Expect the next song to be "Hotel California by Eagles"
    console.log(nextSong); // { title: 'Hotel California', artist: 'Eagles', duration: 391 }
    console.log(firstSong); // { title: 'Bohemian Rhapsody', artist: 'Queen', duration: 354 }

    // should play the previous song
    player = new Player(songs);
    player.playNext(); // Move to the second song
    const currentSong = player.getCurrentSong();
    const previousSong = player.playPrevious();

    // Expect the previous song to be "Bohemian Rhapsody by Queen"
    console.log(previousSong); // { title: 'Bohemian Rhapsody', artist: 'Queen', duration: 354 }
    console.log(currentSong); // { title: 'Hotel California', artist: 'Eagles', duration: 391 }

    // should loop to the first song when playing next from the last song
    player = new Player(songs);
    player.playNext(); // Move to the second song
    player.playNext(); // Move to the third song
    player.playNext(); // Move to the fourth song

    const nextSongToFirst = player.playNext(); // Should loop to the first song

    // Expect the next song to be "Bohemian Rhapsody by Queen"
    console.log(nextSongToFirst); // { title: 'Bohemian Rhapsody', artist: 'Queen', duration: 354 }

    // should loop to the last song when playing previous from the first song
    player = new Player(songs);
    player.playNext(); // Move to the first song
    player.playNext(); // Move to the second song
    player.playNext(); // Move to the third song
    player.playNext(); // Move to the fourth song

    const previousToLast = player.playPrevious(); // Should loop to the last song

    // Expect the previous song to be "Billie Jean by Michael Jackson"
    console.log(previousToLast); // { title: 'Billie Jean', artist: 'Michael Jackson', duration: 294 }

    // should loop through the entire playlist
    player = new Player(songs);
    const playedSongs = player.loopThroughPlaylist();

    // The expected order of songs for two loops
    console.log(playedSongs); // [
 //      { title: 'Bohemian Rhapsody', artist: 'Queen', duration: 354 },
 //      { title: 'Hotel California', artist: 'Eagles', duration: 391 },
 //      { title: 'Shape of You', artist: 'Ed Sheeran', duration: 233 },
 //      { title: 'Billie Jean', artist: 'Michael Jackson', duration: 294 },
 //      { title: 'Bohemian Rhapsody', artist: 'Queen', duration: 354 },
 //      { title: 'Hotel California', artist: 'Eagles', duration: 391 },
 //      { title: 'Shape of You', artist: 'Ed Sheeran', duration: 233 },
 //      { title: 'Billie Jean', artist: 'Michael Jackson', duration: 294 }
 //    ]

Use DoublyLinkedList to implement LRU cache

    interface CacheEntry<K, V> {
      key: K;
      value: V;
    }

    class LRUCache<K = string, V = any> {
      private readonly capacity: number;
      private list: DoublyLinkedList<CacheEntry<K, V>>;
      private map: Map<K, DoublyLinkedListNode<CacheEntry<K, V>>>;

      constructor(capacity: number) {
        if (capacity <= 0) {
          throw new Error('lru cache capacity must be greater than 0');
        }
        this.capacity = capacity;
        this.list = new DoublyLinkedList<CacheEntry<K, V>>();
        this.map = new Map<K, DoublyLinkedListNode<CacheEntry<K, V>>>();
      }

      // Get cached value
      get(key: K): V | undefined {
        const node = this.map.get(key);

        if (!node) return undefined;

        // Move the visited node to the head of the linked list (most recently used)
        this.moveToFront(node);

        return node.value.value;
      }

      // Set cache value
      set(key: K, value: V): void {
        // Check if it already exists
        const node = this.map.get(key);

        if (node) {
          // Update value and move to head
          node.value.value = value;
          this.moveToFront(node);
          return;
        }

        // Check capacity
        if (this.list.length >= this.capacity) {
          // Delete the least recently used element (the tail of the linked list)
          const removedNode = this.list.tail;
          if (removedNode) {
            this.map.delete(removedNode.value.key);
            this.list.pop();
          }
        }

        // Create new node and add to head
        const newEntry: CacheEntry<K, V> = { key, value };
        this.list.unshift(newEntry);

        // Save node reference in map
        const newNode = this.list.head;
        if (newNode) {
          this.map.set(key, newNode);
        }
      }

      // Move the node to the head of the linked list
      private moveToFront(node: DoublyLinkedListNode<CacheEntry<K, V>>): void {
        this.list.delete(node);
        this.list.unshift(node.value);
      }

      // Delete specific key
      delete(key: K): boolean {
        const node = this.map.get(key);
        if (!node) return false;

        // Remove from linked list
        this.list.delete(node);
        // Remove from map
        this.map.delete(key);

        return true;
      }

      // Clear cache
      clear(): void {
        this.list.clear();
        this.map.clear();
      }

      // Get the current cache length
      get length(): number {
        return this.list.length;
      }

      // Check if it is empty
      get isEmpty(): boolean {
        return this.list.isEmpty();
      }
    }

    // should set and get values correctly
    const cache = new LRUCache<string, number>(3);
    cache.set('a', 1);
    cache.set('b', 2);
    cache.set('c', 3);

    console.log(cache.get('a')); // 1
    console.log(cache.get('b')); // 2
    console.log(cache.get('c')); // 3

    // The least recently used element should be evicted when capacity is exceeded
    cache.clear();
    cache.set('a', 1);
    cache.set('b', 2);
    cache.set('c', 3);
    cache.set('d', 4); // This will eliminate 'a'

    console.log(cache.get('a')); // undefined
    console.log(cache.get('b')); // 2
    console.log(cache.get('c')); // 3
    console.log(cache.get('d')); // 4

    // The priority of an element should be updated when it is accessed
    cache.clear();
    cache.set('a', 1);
    cache.set('b', 2);
    cache.set('c', 3);

    cache.get('a'); // access 'a'
    cache.set('d', 4); // This will eliminate 'b'

    console.log(cache.get('a')); // 1
    console.log(cache.get('b')); // undefined
    console.log(cache.get('c')); // 3
    console.log(cache.get('d')); // 4

    // Should support updating existing keys
    cache.clear();
    cache.set('a', 1);
    cache.set('a', 10);

    console.log(cache.get('a')); // 10

    // Should support deleting specified keys
    cache.clear();
    cache.set('a', 1);
    cache.set('b', 2);

    console.log(cache.delete('a')); // true
    console.log(cache.get('a')); // undefined
    console.log(cache.length); // 1

    // Should support clearing cache
    cache.clear();
    cache.set('a', 1);
    cache.set('b', 2);
    cache.clear();

    console.log(cache.length); // 0
    console.log(cache.isEmpty); // true

finding lyrics by timestamp in Coldplay's "Fix You"

    // Create a DoublyLinkedList to store song lyrics with timestamps
    const lyricsList = new DoublyLinkedList<{ time: number; text: string }>();

    // Detailed lyrics with precise timestamps (in milliseconds)
    const lyrics = [
      { time: 0, text: "When you try your best, but you don't succeed" },
      { time: 4000, text: 'When you get what you want, but not what you need' },
      { time: 8000, text: "When you feel so tired, but you can't sleep" },
      { time: 12000, text: 'Stuck in reverse' },
      { time: 16000, text: 'And the tears come streaming down your face' },
      { time: 20000, text: "When you lose something you can't replace" },
      { time: 24000, text: 'When you love someone, but it goes to waste' },
      { time: 28000, text: 'Could it be worse?' },
      { time: 32000, text: 'Lights will guide you home' },
      { time: 36000, text: 'And ignite your bones' },
      { time: 40000, text: 'And I will try to fix you' }
    ];

    // Populate the DoublyLinkedList with lyrics
    lyrics.forEach(lyric => lyricsList.push(lyric));

    // Test different scenarios of lyric synchronization

    // 1. Find lyric at exact timestamp
    const exactTimeLyric = lyricsList.getBackward(lyric => lyric.value.time <= 36000);
    console.log(exactTimeLyric?.text); // 'And ignite your bones'

    // 2. Find lyric between timestamps
    const betweenTimeLyric = lyricsList.getBackward(lyric => lyric.value.time <= 22000);
    console.log(betweenTimeLyric?.text); // "When you lose something you can't replace"

    // 3. Find first lyric when timestamp is less than first entry
    const earlyTimeLyric = lyricsList.getBackward(lyric => lyric.value.time <= -1000);
    console.log(earlyTimeLyric); // undefined

    // 4. Find last lyric when timestamp is after last entry
    const lateTimeLyric = lyricsList.getBackward(lyric => lyric.value.time <= 50000);
    console.log(lateTimeLyric?.text); // 'And I will try to fix you'

cpu process schedules

    class Process {
      constructor(
        public id: number,
        public priority: number
      ) {}

      execute(): string {
        return `Process ${this.id} executed.`;
      }
    }

    class Scheduler {
      private queue: DoublyLinkedList<Process>;

      constructor() {
        this.queue = new DoublyLinkedList<Process>();
      }

      addProcess(process: Process): void {
        // Insert processes into a queue based on priority, keeping priority in descending order
        let current = this.queue.head;
        while (current && current.value.priority >= process.priority) {
          current = current.next;
        }

        if (!current) {
          this.queue.push(process);
        } else {
          this.queue.addBefore(current, process);
        }
      }

      executeNext(): string | undefined {
        // Execute tasks at the head of the queue in order
        const process = this.queue.shift();
        return process ? process.execute() : undefined;
      }

      listProcesses(): string[] {
        return this.queue.toArray().map(process => `Process ${process.id} (Priority: ${process.priority})`);
      }

      clear(): void {
        this.queue.clear();
      }
    }

    // should add processes based on priority
    let scheduler = new Scheduler();
    scheduler.addProcess(new Process(1, 10));
    scheduler.addProcess(new Process(2, 20));
    scheduler.addProcess(new Process(3, 15));

    console.log(scheduler.listProcesses()); // [
 //      'Process 2 (Priority: 20)',
 //      'Process 3 (Priority: 15)',
 //      'Process 1 (Priority: 10)'
 //    ]

    // should execute the highest priority process
    scheduler = new Scheduler();
    scheduler.addProcess(new Process(1, 10));
    scheduler.addProcess(new Process(2, 20));

    console.log(scheduler.executeNext()); // 'Process 2 executed.'
    console.log(scheduler.listProcesses()); // ['Process 1 (Priority: 10)']

    // should clear all processes
    scheduler = new Scheduler();
    scheduler.addProcess(new Process(1, 10));
    scheduler.addProcess(new Process(2, 20));

    scheduler.clear();
    console.log(scheduler.listProcesses()); // []

API docs & Examples

API Docs

Live Examples

Examples Repository

Data Structures

Data Structure Unit Test Performance Test API Docs
Linked List SinglyLinkedList
Singly Linked List SinglyLinkedList
Doubly Linked List DoublyLinkedList

Standard library data structure comparison

Data Structure Typed C++ STL java.util Python collections
DoublyLinkedList<E> list<T> LinkedList<E> -
SinglyLinkedList<E> - - -

Benchmark

doubly-linked-list
test name time taken (ms) executions per sec sample deviation
1,000,000 push 221.57 4.51 0.03
1,000,000 unshift 229.02 4.37 0.07
1,000,000 unshift & shift 169.21 5.91 0.02
1,000,000 insertBefore 314.48 3.18 0.07
singly-linked-list
test name time taken (ms) executions per sec sample deviation
10,000 push & pop 212.98 4.70 0.01
10,000 insertBefore 250.68 3.99 0.01

Built-in classic algorithms

Algorithm Function Description Iteration Type

Software Engineering Design Standards

Principle Description
Practicality Follows ES6 and ESNext standards, offering unified and considerate optional parameters, and simplifies method names.
Extensibility Adheres to OOP (Object-Oriented Programming) principles, allowing inheritance for all data structures.
Modularization Includes data structure modularization and independent NPM packages.
Efficiency All methods provide time and space complexity, comparable to native JS performance.
Maintainability Follows open-source community development standards, complete documentation, continuous integration, and adheres to TDD (Test-Driven Development) patterns.
Testability Automated and customized unit testing, performance testing, and integration testing.
Portability Plans for porting to Java, Python, and C++, currently achieved to 80%.
Reusability Fully decoupled, minimized side effects, and adheres to OOP.
Security Carefully designed security for member variables and methods. Read-write separation. Data structure software does not need to consider other security aspects.
Scalability Data structure software does not involve load issues.

Package Sidebar

Install

npm i linked-list-typed

Weekly Downloads

4,938

Version

2.0.0

License

MIT

Unpacked Size

2.57 MB

Total Files

371

Last publish

Collaborators

  • zrwusa.org