A powerful data generation library.
MockThis
is a powerful tool for generating mock data for testing and development purposes, built with extensibility in mind. With its flexible schema definitions, variety of built-in generators, and the ability to extend functionality through plugins and custom generators, it can greatly simplify the process of creating realistic test data. With a fluid and intuitive API, MockThis
allows you to easily define and generate complex data structures.
You can install MockThis
using npm:
npm install mockthis
Here is a basic example of how to use MockThis
to generate mock data:
import { MockThis, FirstName, LastName, Email, Sequence, DecimalRange, DateTime, Address, City, Country, Id, PhoneNumber, ZipCode } from "mockthis";
// Define the schema for the mock data
const schema = {
id: Id,
person: {
first: FirstName,
last: LastName,
emails: [Email]
phoneNumber: PhoneNumber,
},
address: {
address: Address,
city: City,
state: State,
zipCode: ZipCode
country: Country
},
stats: {
score: DecimalRange(0, 100),
lastLogin: DateTime
},
};
// Create and configure the MockThis instance
MockThis(schema)
.setTotal(1, 5)
.setArrayRange(1, 5)
.setNullValueChance(0.1)
.setFormats({
date: "YYYY-MM-DD",
time: "HH:mm:ss"
})
.asJson()
.then((data) => {
console.log(data);
});
MockThis
supports complex nesting of schemas and allows you to set array lengths directly within your schema declaration. This flexibility enables you to generate intricate and deeply nested mock data structures according to your specific requirements. The length of generated arrays can also be set in combination with the setArrayRange
method.
Here is a basic example:
const schema = {
nested: {
values: {
singleValue: Constant("Nested Value"),
arrayValues: [Animal, 1, 5], // This array will have between 1 and 5 values.
},
arrayception: [[Sequence(colors), 5], 5],
arrayOfObjects: [{
prop1: Word,
prop2: Sentence,
prop3: Paragraph
}] // This array will use the global array range defined in setArrayRange.
}
};
MockThis(schema)
.setTotal(5)
.setArrayRange(1, 10) // This range will apply to all generated arrays unless they have a range defined inline.
.asJson()
.then((data) => {
console.log(data);
});
Creates a new MockThisInstance
with the provided schema.
-
Parameters:
-
schema
: An object defining the structure and data types of the mock data. -
plugins
: An optional array ofMockThisPlugin
objects. -
generator
: An optional data generator of any type. This generator will be passed to allTypeFunc
generator functions. The default value is an instance ofFaker
. NOTE: If you provide a custom generator object, only the built-in utilityTypeFunc
generators will continue to work as the rest rely on the default Faker instance to provide fake data. This functionality is primarily for customTypeFunc
packages that wish to use a data generator other than Faker.
-
-
Returns:
-
MockThisInstance
: A newMockThisInstance
.
-
Usage:
const mockThis = MockThis(schema);
Sets the total number of top-level mock data objects to generate.
-
Parameters:
-
min
: The minimum number of items to generate. -
max?
: Optional. The maximum number of items to generate. If not provided,min
is used.
-
-
Returns:
-
MockThisInstance
: The currentMockThisInstance
. This allows chaining of methods.
-
Usage:
mockThis.setTotal(10); // Generates exactly 10 items
mockThis.setTotal(5, 15); // Generates between 5 and 15 items
Sets the range for lengths of arrays within the data.
-
Parameters:
-
min
: The minimum length of arrays. -
max?
: Optional. The maximum length of arrays. If not provided,min
is used.
-
-
Returns:
-
MockThisInstance
: The currentMockThisInstance
. This allows chaining of methods.
-
Usage:
mockThis.setArrayRange(2); // Arrays will have a length of 2
mockThis.setArrayRange(2, 5); // Arrays will have lengths between 2 and 5
Sets format for provided key.
-
Parameters:
-
key
: The key of the format. -
value
: The value of the format.
-
-
Returns:
-
MockThisInstance
: The currentMockThisInstance
. This allows chaining of methods.
-
Usage:
mockThis.setFormat("date", "DD/MM/YYYY");
Sets formats for all provided keys.
-
Parameters:
-
formats
: An object specifying format strings for date and time.
-
-
Returns:
-
MockThisInstance
: The currentMockThisInstance
. This allows chaining of methods.
-
Usage:
mockThis.setFormats({
date: "DD/MM/YYYY",
time: "HH:mm",
});
Sets the probability that fields can be null
.
-
Parameters:
-
chance
: A number between0
and1
representing the probability.
-
-
Returns:
-
MockThisInstance
: The currentMockThisInstance
. This allows chaining of methods.
-
Usage:
mockThis.setNullValueChance(0.2); // 20% chance of null values
Specifies fields that must not be null
.
-
Parameters:
-
requiredFields
: An array of field names that are required.
-
-
Returns:
-
MockThisInstance
: The currentMockThisInstance
. This allows chaining of methods.
-
Usage:
mockThis.setRequired(["id", "name"]);
Adds user-defined values to the blueprint. These can be used in custom TypeFunc
functions by accessing the the userDefined
property on the Blueprint
param.
-
Parameters:
-
blueprint
: An object containing custom fields.
-
-
Returns:
-
MockThisInstance
: The currentMockThisInstance
. This allows chaining of methods.
-
Usage:
mockThis.setUserDefinedBlueprint({
customField: "Custom Value",
});
Generates the mock data as a JSON string.
-
Parameters:
-
replacer?
: Optional. A function that alters the behavior of the stringification process. -
space?
: Optional. A string or number that's used to insert white space into the output JSON string.
-
-
Returns:
-
Promise<string>
: A promise that resolves to the JSON string.
-
Usage:
const data = await mockThis.asJson(null, 2);
Generates the mock data as a JavaScript object or array of objects.
-
Returns:
-
Promise<object[]>
: A promise that resolves to the generated object(s).
-
Usage:
const data = await mockThis.asObject()
MockThis
includes a variety of built-in data generators:
-
Basic Types:
-
Integer
: Random integer between -500 and 500. -
IntegerRange(min: number, max: number)
: Random integer between specified min and max. -
Decimal
: Random decimal number. -
DecimalRange(min: number, max: number)
: Random decimal between specified min and max. -
Bool
: Random boolean value. -
Constant<T>(value: T)
: Constant value.
-
-
Date and Time:
-
DateTime
: Random datetime. -
DateOnly
: Random date. -
TimeOnly
: Random time. -
DateTimeFormatted(format: string)
: Random datetime in a custom format. -
Birthdate
: Random birthdate for an adult between 18 and 80 years old.
-
-
Lorem Ipsum
-
Letter
: Random letter. -
Word
: Random word. -
Sentence
: Random sentence. -
Paragraph
: Random paragraph.
-
-
Person:
-
FirstName
: Random first name. -
LastName
: Random last name. -
Email
: Random email address. -
PhoneNumber
: Random phone number. -
SocialSecurityNumber
: Random social security number.
-
-
Location:
-
Address
: Random street address. -
City
: Random city name. -
Country
: Random country name. -
State
: Random state or region. -
ZipCode
: Random postal code. -
Coordinates
: Random geographical coordinates.
-
-
Financial:
-
Currency
: Random currency code. -
Dollar
: Random dollar amount. -
Euro
: Random euro amount.
-
-
Web:
-
Url
: Random url. -
AvatarUrl
: Random avatar URL.
-
-
Company:
-
CompanyName
: Random company name. -
CatchPhrase
: Random company catchphrase. -
CatchPhraseAdjective
: Random adjective for a catchphrase. -
CatchPhraseDescriptor
: Random descriptor for a catchphrase. -
CatchPhraseNoun
: Random noun for a catchphrase. -
BuzzAdjective
: Random buzzword adjective. -
BuzzNoun
: Random buzzword noun. -
BuzzPhrase
: Random buzzword phrase. -
BuzzVerb
: Random buzzword verb.
-
-
Vehicle:
-
Vehicle
: Random vehicle. -
VehicleManufacturer
: Random vehicle manufacturer. -
VehicleModel
: Random vehicle model. -
VehicleType
: Random vehicle type. -
VehicleFuelType
: Random vehicle fuel type.
-
-
Music:
-
MusicAlbum
: Random music album name. -
MusicArtist
: Random music artist name. -
MusicGenre
: Random music genre. -
MusicSong
: Random song name.
-
-
Book
-
BookTitle
: Random book title. -
BookAuthor
: Random book author. -
BookGenre
: Random book genre. -
BookPublisher
: Random book publisher. -
BookFormat
: Random book format. -
BookSeries
: Random book series.
-
-
Food:
-
FoodAdjective
: Random food-related adjective. -
FoodDescription
: Random food description. -
FoodDish
: Random dish name. -
FoodEthnicCategory
: Random ethnic food category. -
FoodFruit
: Random fruit name. -
FoodIngredient
: Random ingredient name. -
FoodMeat
: Random meat name. -
FoodSpice
: Random spice name. -
FoodVegetable
: Random vegetable name.
-
-
Airline:
-
AircraftType
: Random aircraft type. -
Airline
: Random airline name. -
Airplane
: Random airplane name. -
Airport
: Random airport name. -
FlightNumber
: Random flight number. -
RecordLocator
: Random record locator. -
Seat
: Random seat assignment.
-
-
Misc:
-
Animal
: Random animal type. -
Url
: Random url. -
Color
: Random color. -
Element
: Random chemical element.
-
-
Utility:
-
Random<T>(items: T[])
: Random value from an array of values. -
Sequence<T>(items: T[])
: Value from an array. The returned index is incremented each time thisTypeFunc
returns a value. -
Id(max?: number)
: A new number id from a sequence.max
defaults to 10000. -
Uuid
: A UUID (Universally Unique Identifier). -
EnumRandom(enumType)
: Random enum value. -
EnumSequence(enumType)
: Value from an enum. The returned index is incremented each time thisTypeFunc
returns a value. -
MapValue<T, U>(typeFunc: TypeFunc<T>, mapCallback: (value: T) => U) => TypeFunc<U>
: The value of the providedTypeFunc
modified using themapCallback
function. -
ReduceValues<T>(typeFuncs: TypeFunc<any>[], reduceCallback: (values: any[]) => T) => TypeFunc<T>
: Combines the returned values of multipleTypeFunc
s using thereduceCallback
function. -
Async<T>(generator: () => Promise<T>)
: Async value. -
Dep<T>(dependencies: string[], (dependencies: any[], getValue: (type: TypeFunc) => any) => T)
: TheDep
function creates a custom generator that allows a field's value to be dependent on other fields in your schema. It's useful for generating values that are calculated based on other fields and where data consistency is desired. The second parametergetValue
is a helper function to generate values from otherTypeFunc
generators if needed.
-
You can create more complex generators that depend on other fields in the data, use external data sources, asynchronous operations, or other advanced logic.
// Define a custom generator that depends on other fields
const FullNameGenerator = Dep(
["firstName", "lastName"],
([firstName, lastName], getValue) => {
const middleName = getValue(FirstName);
return `${firstName} ${middleName} ${lastName}`;
}
);
const schema = {
firstName: FirstName,
lastName: LastName,
fullName: FullNameGenerator,
};
MockThis(schema)
.asObject()
.then((data) => {
console.log(data);
});
-
Dep: The
Dep
function allows you to create a custom generator that depends on the values of other fields. -
Dependencies: You specify an array of dependency field names as the first argument to
Dep
. The values can be dot delimited to access nested properties. -
Callback: The second argument is a callback function that receives the values of the dependencies as well as a
getValue
helper function that can be used to generate values using other TypeFuncs. -
Example: In this example,
fullName
depends onfirstName
andlastName
and combines them, along with another value generated as the middle name, to create the full name.
NOTE: Dep
cannot be nested within another Dep
function.
// Define an asynchronous custom generator
const AsyncGenerator = Async(async () => {
const response = await fetch("https://api.example.com/data");
const data = await response.json();
return data.value;
});
const schema = {
asyncField: AsyncGenerator,
};
MockThis(schema)
.asObject()
.then((data) => {
console.log(data);
});
-
Async: Wrap your async function with
Async
to create an asynchronous generator.
// Map Decimal TypeFunc to 2 decimal places
const PrecisionDecimal = MapValue(Decimal, (value) => parseInt(value.toFixed(2)));
const schema = {
precisionDecimal: PrecisionDecimal,
};
MockThis(schema)
.asObject()
.then((data) => {
console.log(data);
});
-
MapValue: Transforms the returned value of the provided
TypeFunc
using themapCallback
function.
// Combine the value of FirstName with the value of LastName
const FullName = ReduceValues([FirstName, LastName], ([firstName, lastName]) => `${firstName} ${lastName}`);
const schema = {
fullName: FullName,
};
MockThis(schema)
.asObject()
.then((data) => {
console.log(data);
});
-
ReduceValues: Combines the returned values of multiple
TypeFunc
s using thereduceCallback
function.
In addition to the built in data generators, you can create custom TypeFunc
generators to produce new types of data.
// Define a custom generator function
const CustomType: TypeFunc<string> = (generator, blueprint) => {
// Custom logic to generate a value
return "Custom Generated Value";
};
// Use the custom generator in your schema
const schema = {
customType: CustomType,
};
MockThis(schema)
.asObject()
.then((data) => {
console.log(data);
});
-
TypeFunc: Use
TypeFunc
to define a custom generator function. - Generator: The provided data generator. This defaults to a built-in instance of Faker.
-
Blueprint: The config object used by
MockThis
in data generation. Contains core config as well as user defined config. - Use in Schema: Use your custom generator in the schema like any other generator.
You can extend the functionality of MockThis by creating custom generators and plugins. This allows you to add new data generation methods or modify existing behavior to suit your specific needs.
To create a custom plugin, you need to implement the MockThisPlugin
interface. This interface allows you to register new methods on the MockThisInstance
and BlueprintBuilder
classes, as well as modify the generated data at various points in the generation process.
Here's an example of a custom plugin called ExamplePlugin
:
export class ExamplePlugin implements MockThisPlugin {
registerMethods(instance: IMockThisInstance, blueprintBuilder: IBlueprintBuilder): void {
blueprintBuilder.setPluginConfig = (config: Record<string, any>) => {
blueprintBuilder.getBlueprint().pluginConfig = config;
};
instance.setPluginConfig = (config: Record<string, any>) => {
blueprintBuilder.setPluginConfig(config);
// Ensure that you return the instance when creating a method on `IMockThisInstance` to enable method chaining
return instance;
};
}
beforeSchemaPrepared(blueprint: IBlueprint, schema: Schema): Schema {
// Apply transformation logic here
return schema;
}
afterSchemaPrepared(blueprint: IBlueprint, schemaItems: SchemaItem[]): SchemaItem[] {
// Apply transformation logic here
return schemaItems;
}
afterDataGenerated(blueprint: IBlueprint, schemas: Schema[]): Schema[] {
// Apply transformation logic here
return schemas;
}
}
declare module 'mockthis' {
interface IBlueprint {
pluginConfig: Record<string, any>;
}
interface IBlueprintBuilder {
setPluginConfig(config: Record<string, any>): void;
}
interface IMockThisInstance {
setPluginConfig(config: Record<string, any>): this;
}
}
-
registerMethods: This method allows you to add new methods to the
MockThisInstance
andBlueprintBuilder
. -
afterSchemaPrepared: This method is called after the schema has been processed. You can modify the schema items
SchemaItem[]
. - afterDataGenerated: This method is called after the data has been generated. You can modify the data before it is returned.
NOTE: Make sure to extend the necessary interfaces to enable TypeScript support.
To use your custom plugin, you need to pass an instance of it to the MockThis
function:
const schema = {
id: Id,
name: FirstName
};
// Create and configure the MockThis instance with the plugin
MockThis(schema, [new ExamplePlugin()]) // Note: Plugins are applied sequentially, with those defined later in the array having higher precedence.
.setTotal(1)
.setPluginConfig({
prop: "value"
})
.asObject()
.then((data) => {
console.log(data);
});
-
Pass Plugin to MockThis: When creating the
MockThis
instance, pass an array of plugins as the second argument. -
Use New Methods: You can now use the new method added by your plugin (
setPluginConfig
in this example).
By creating custom plugins and generators, you can extend MockThis to better fit your testing and development needs. Whether you're adding utility methods, modifying generated data, or creating specialized data generators, MockThis provides a flexible framework for mock data generation.