nnstats
Javascript package for analyzing Neural Networks.
Installation
npm install --save nnstats
Usage
Basic usage
The following show basic usage for analyzing CNN in Tensorflow (padding
takes either SAME
or VALID
).
'use strict'; let nnStats = ;let analyzer = nnStatsanalyzer;let utils = nnStatsutils; let model = 'type': 'conv' 'filter': 5 5 32 'stride': 1 1 'padding': 'SAME' 'datasize': 4 'type': 'pool' 'filter': 2 2 'stride': 2 2 'padding': 'SAME' 'datasize': 4 'type': 'conv' 'filter': 5 5 64 'stride': 2 2 'padding': 'SAME' 'datasize': 4 'type': 'pool' 'filter': 2 2 'stride': 2 2 'padding': 'SAME' 'datasize': 4 'type': 'fc' 'hidden': 2048 'type': 'fc' 'hidden': 1000 let input = 28 28 1let options = tensorflow: true let stats = analyzer; utils;
Model layout
Currently, here are 3 supported layers type: convolution layer (conv
), pooling layer (pool
), and fully-connected layer ('fc'). In all cases, type
field is required in layer object to identity layer type.
Fields in conv
layer:
filter
: 3D array kernal size (height, width, outChannel).stride
: 2D array stride size (height, width).padding
: 2D array padding size (height, width).datasize
(optional): number of byte of one value (forfloat32
, this should be4
because32 / 8 = 4
). This value is used to calculate how much memory needed for the network.
Fields in pool
layer:
filter
: 2D array kernal size (height, width).stride
: 2D array stride size (height, width).padding
: 2D array padding size (height, width).datasize
(optional): number of byte of one value (forfloat32
, this should be4
because32 / 8 = 4
). This value is used to calculate how much memory needed for the network.
Fields in fc
layer:
hidden
: number of neurons in hiddent layers.
Created with
Yeoman and Generator-simple-package
License
MIT © nghiattran