noble-bls12-381
Fastest implementation of BLS12-381 in a scripting language. The pairing-friendly Barreto-Lynn-Scott elliptic curve construction allows to:
- Construct zk-SNARKs at the 128-bit security
- Use threshold signatures, which allows a user to sign lots of messages with one signature and verify them swiftly in a batch, using Boneh-Lynn-Shacham signature scheme.
Compatible with Algorand, Chia, Dfinity, Ethereum, FIL, Zcash. Matches specs pairing-curves-09, bls-sigs-04, hash-to-curve-11.
To learn more about internals, check out BLS12-381 for the rest of us & key concepts of pairings. To try it live, see the online demo & threshold sigs demo.
This library belongs to noble crypto
noble-crypto — high-security, easily auditable set of contained cryptographic libraries and tools.
- Just two files
- No dependencies
- Easily auditable TypeScript/JS code
- Supported in all major browsers and stable node.js versions
- All releases are signed with PGP keys
- Check out all libraries: secp256k1, ed25519, bls12-381
Usage
Use NPM in node.js / browser, or include single file from GitHub's releases page:
npm install noble-bls12-381
const bls = require('noble-bls12-381');
// if you're using single file, use global variable nobleBls12381
// You can use Uint8Array, or hex string for readability
const privateKey = '67d53f170b908cabb9eb326c3c337762d59289a8fec79f7bc9254b584b73265c';
const privateKeys = [
'18f020b98eb798752a50ed0563b079c125b0db5dd0b1060d1c1b47d4a193e1e4',
'ed69a8c50cf8c9836be3b67c7eeff416612d45ba39a5c099d48fa668bf558c9c',
'16ae669f3be7a2121e17d0c68c05a8f3d6bef21ec0f2315f1d7aec12484e4cf5'
];
const message = '64726e3da8';
const messages = ['d2', '0d98', '05caf3'];
(async () => {
const publicKey = bls.getPublicKey(privateKey);
const publicKeys = privateKeys.map(bls.getPublicKey);
const signature = await bls.sign(message, privateKey);
const isCorrect = await bls.verify(signature, message, publicKey);
console.log('key', publicKey);
console.log('signature', signature);
console.log('is correct:', isCorrect);
// Sign 1 msg with 3 keys
const signatures2 = await Promise.all(privateKeys.map(p => bls.sign(message, p)));
const aggPubKey2 = bls.aggregatePublicKeys(publicKeys);
const aggSignature2 = bls.aggregateSignatures(signatures2);
const isCorrect2 = await bls.verify(aggSignature2, message, aggPubKey2);
console.log();
console.log('signatures are', signatures2);
console.log('merged to one signature', aggSignature2);
console.log('is correct:', isCorrect2);
// Sign 3 msgs with 3 keys
const signatures3 = await Promise.all(privateKeys.map((p, i) => bls.sign(messages[i], p)));
const aggSignature3 = bls.aggregateSignatures(signatures3);
const isCorrect3 = await bls.verifyBatch(aggSignature3, messages, publicKeys);
console.log();
console.log('keys', publicKeys);
console.log('signatures', signatures3);
console.log('merged to one signature', aggSignature3);
console.log('is correct:', isCorrect3);
})();
API
getPublicKey(privateKey)
sign(message, privateKey)
verify(signature, message, publicKey)
aggregatePublicKeys(publicKeys)
aggregateSignatures(signatures)
verifyBatch(signature, messages, publicKeys)
pairing(G1Point, G2Point)
getPublicKey(privateKey)
function getPublicKey(privateKey: Uint8Array | bigint): Uint8Array;
function getPublicKey(privateKey: string): string;
-
privateKey: Uint8Array | string | bigint
will be used to generate public key. Public key is generated by executing scalar multiplication of a base Point(x, y) by a fixed integer. The result is anotherPoint(x, y)
which we will by default encode to hex Uint8Array. - Returns
Uint8Array
: encoded publicKey for signature verification
Note: if you need spec-based KeyGen
, use paulmillr/bls12-381-keygen. It should work properly with ETH2 and FIL keys.
sign(message, privateKey)
function sign(message: Uint8Array, privateKey: Uint8Array): Promise<Uint8Array>;
function sign(message: string, privateKey: string): Promise<Uint8Array>;
function sign(message: PointG2, privateKey: Uint8Array | string | bigint): Promise<PointG2>;
-
message: Uint8Array | string
- message which would be hashed & signed -
privateKey: Uint8Array | string | bigint
- private key which will sign the hash - Returns
Uint8Array | string | PointG2
: encoded signature
Check out Internals section on instructions about domain separation tag (DST).
verify(signature, message, publicKey)
function verify(
signature: Uint8Array | string | PointG2,
message: Uint8Array | string | PointG2,
publicKey: Uint8Array | string | PointG1
): Promise<boolean>
-
signature: Uint8Array | string
- object returned by thesign
oraggregateSignatures
function -
message: Uint8Array | string
- message hash that needs to be verified -
publicKey: Uint8Array | string
- e.g. that was generated fromprivateKey
bygetPublicKey
- Returns
Promise<boolean>
:true
/false
whether the signature matches hash
aggregatePublicKeys(publicKeys)
function aggregatePublicKeys(publicKeys: Uint8Array[]): Uint8Array;
function aggregatePublicKeys(publicKeys: string[]): string;
function aggregatePublicKeys(publicKeys: PointG1[]): PointG1;
-
publicKeys: (Uint8Array | string | PointG1)[]
- e.g. that have been generated fromprivateKey
bygetPublicKey
- Returns
Uint8Array | PointG1
: one aggregated public key which calculated from public keys
aggregateSignatures(signatures)
function aggregateSignatures(signatures: Uint8Array[]): Uint8Array;
function aggregateSignatures(signatures: string[]): string;
function aggregateSignatures(signatures: PointG2[]): PointG2;
-
signatures: (Uint8Array | string | PointG2)[]
- e.g. that have been generated bysign
- Returns
Uint8Array | PointG2
: one aggregated signature which calculated from signatures
verifyBatch(signature, messages, publicKeys)
function verifyBatch(
signature: Uint8Array | string | PointG2,
messages: (Uint8Array | string | PointG2)[],
publicKeys: (Uint8Array | string | PointG1)[]
): Promise<boolean>
-
signature: Uint8Array | string | PointG2
- object returned by theaggregateSignatures
function -
messages: (Uint8Array | string | PointG2)[]
- messages hashes that needs to be verified -
publicKeys: (Uint8Array | string | PointG1)[]
- e.g. that were generated fromprivateKeys
bygetPublicKey
- Returns
Promise<boolean>
:true
/false
whether the signature matches hashes
pairing(pointG1, pointG2)
function pairing(
pointG1: PointG1,
pointG2: PointG2,
withFinalExponent: boolean = true
): Fp12
-
pointG1: PointG1
- simple point,x, y
are bigints -
pointG2: PointG2
- point over curve with complex numbers ((x₁, x₂+i), (y₁, y₂+i)
) - pairs of bigints -
withFinalExponent: boolean
- should the result be powered by curve order; very slow - Returns
Fp12
: paired point over 12-degree extension field.
Helpers
// characteristic; z + (z⁴ - z² + 1)(z - 1)²/3
bls.CURVE.P // 0x1a0111ea397fe69a4b1ba7b6434bacd764774b84f38512bf6730d2a0f6b0f6241eabfffeb153ffffb9feffffffffaaab
// curve order; z⁴ − z² + 1
bls.CURVE.r // 0x73eda753299d7d483339d80809a1d80553bda402fffe5bfeffffffff00000001
// cofactor; (z - 1)²/3
bls.curve.h // 0x396c8c005555e1568c00aaab0000aaab
// G1 base point coordinates (x, y)
bls.CURVE.Gx
// x = 3685416753713387016781088315183077757961620795782546409894578378688607592378376318836054947676345821548104185464507
bls.CURVE.Gy
// y = 1339506544944476473020471379941921221584933875938349620426543736416511423956333506472724655353366534992391756441569
// G2 base point coordinates (x₁, x₂+i), (y₁, y₂+i)
bls.CURVE.G2x
// x =
// 3059144344244213709971259814753781636986470325476647558659373206291635324768958432433509563104347017837885763365758,
// 352701069587466618187139116011060144890029952792775240219908644239793785735715026873347600343865175952761926303160
bls.CURVE.G2y
// y =
// 927553665492332455747201965776037880757740193453592970025027978793976877002675564980949289727957565575433344219582,
// 1985150602287291935568054521177171638300868978215655730859378665066344726373823718423869104263333984641494340347905
// Classes
bls.Fp // field over Fp
bls.Fp2 // field over Fp₂
bls.Fp12 // finite extension field over irreducible polynominal
bls.PointG1 // projective point (xyz) at G1
bls.PointG2 // projective point (xyz) at G2
Internals
The library uses G1 for public keys and G2 for signatures. Adding support for G1 signatures is planned.
- BLS Relies on Bilinear Pairing (expensive)
- Private Keys: 32 bytes
- Public Keys: 48 bytes: 381 bit affine x coordinate, encoded into 48 big-endian bytes.
- Signatures: 96 bytes: two 381 bit integers (affine x coordinate), encoded into two 48 big-endian byte arrays.
- The signature is a point on the G2 subgroup, which is defined over a finite field with elements twice as big as the G1 curve (G2 is over Fp2 rather than Fp. Fp2 is analogous to the complex numbers).
- The 12 stands for the Embedding degree.
Formulas:
-
P = pk x G
- public keys -
S = pk x H(m)
- signing -
e(P, H(m)) == e(G, S)
- verification using pairings -
e(G, S) = e(G, SUM(n)(Si)) = MUL(n)(e(G, Si))
- signature aggregation
The BLS parameters for the library are:
-
PK_IN
G1
-
HASH_OR_ENCODE
true
-
DST
BLS_SIG_BLS12381G2_XMD:SHA-256_SSWU_RO_NUL_
- usebls.utils.getDSTLabel()
&bls.utils.setDSTLabel("...")
to read/change the Domain Separation Tag label -
RAND_BITS
64
Filecoin uses little endian byte arrays for private keys - so ensure to reverse byte order if you'll use it with FIL.
Speed
To achieve the best speed out of all JS / Python implementations, the library employs different optimizations:
- cyclotomic exponentation
- endomorphism for clearing cofactor
- pairing precomputation
Benchmarks measured with Apple M1:
getPublicKey x 598 ops/sec @ 1ms/op
sign x 36 ops/sec @ 27ms/op
verify x 28 ops/sec @ 35ms/op
pairing x 69 ops/sec @ 14ms/op
aggregatePublicKeys/8 x 84 ops/sec @ 11ms/op
aggregateSignatures/8 x 40 ops/sec @ 24ms/op
with compression / decompression disabled:
sign/nc x 54 ops/sec @ 18ms/op
verify/nc x 47 ops/sec @ 21ms/op
aggregatePublicKeys/32 x 787 ops/sec @ 1ms/op
aggregatePublicKeys/128 x 558 ops/sec @ 1ms/op
aggregatePublicKeys/512 x 256 ops/sec @ 3ms/op
aggregatePublicKeys/2048 x 81 ops/sec @ 12ms/op
aggregateSignatures/32 x 452 ops/sec @ 2ms/op
aggregateSignatures/128 x 240 ops/sec @ 4ms/op
aggregateSignatures/512 x 81 ops/sec @ 12ms/op
aggregateSignatures/2048 x 22 ops/sec @ 43ms/op
Security
Noble is production-ready.
- No public audits have been done yet. Our goal is to crowdfund the audit.
- It was developed in a similar fashion to noble-secp256k1, which was audited by a third-party firm.
- It was fuzzed by Guido Vranken's cryptofuzz, no serious issues have been found. You can run the fuzzer by yourself to check it.
We're using built-in JS BigInt
, which is "unsuitable for use in cryptography" as per official spec. This means that the lib is potentially vulnerable to timing attacks. But, JIT-compiler and Garbage Collector make "constant time" extremely hard to achieve in a scripting language. Which means any other JS library doesn't use constant-time bigints. Including bn.js or anything else. Even statically typed Rust, a language without GC, makes it harder to achieve constant-time for some cases. If your goal is absolute security, don't use any JS lib — including bindings to native ones. Use low-level libraries & languages.
We however consider infrastructure attacks like rogue NPM modules very important; that's why it's crucial to minimize the amount of 3rd-party dependencies & native bindings. If your app uses 500 dependencies, any dep could get hacked and you'll be downloading rootkits with every npm install
. Our goal is to minimize this attack vector.
Contributing
- Clone the repository.
-
npm install
to install build dependencies like TypeScript -
npm run build
to compile TypeScript code -
npm run test
to run jest ontest/index.ts
Special thanks to Roman Koblov, who have helped to improve pairing speed.
License
MIT (c) Paul Miller (https://paulmillr.com), see LICENSE file.