A batteries-included, model-agnostic prompt engineering library for Node.js and TypeScript.
Build dynamic, reusable prompts that output structured data that's ready to use in your application or API. Compatible with all text-based generative language models such as OpenAI GPT.
- Intuitive, flexible
Prompt
builder - Reusable prompt templates with variables
- Validated output in JSON or CSV
- Model-agnostic, extensible generation API
- Serializable to database and files
To install prompting
, use npm:
npm install prompting
import {Prompt} from 'prompting';
const prompt = Prompt().text('What is your favorite animal?')
console.log(prompt.toString(); // 'What is your favorite animal?'
import {Prompt} from 'prompting';
const prompt = Prompt()
.text('What is your favorite {{topic}}?')
.defaults({topic: 'animal'});
prompt.toString(); // 'What is your favorite animal?'
prompt.vars({topic: 'color'}).toString(); // 'What is your favorite color?'
The library also contains a flexible Generator
class for generating responses to a Prompt
. For convenience, the Generator.prompt()
method creates a new prompt that is bound to the Generator
instance and can be invoked by calling generate()
.
Here's an example using the OpenAIGenerator
:
import {OpenAIGenerator} from 'prompting';
const gpt = new OpenAIGenerator({apiKey: 'my_api_key'});
const prompt = gpt.prompt().text('What is your favorite {{topic}}?');
const result = await prompt.generate({topic: 'color'});
The generate
method returns a Promise that resolves to the model's response for the prompt.
To output a structured object and validate the result automatically, construct your prompt using the schema
method. The Prompt
class leverages the power of JSON Schema and the battle-tested validation library ajv
to validate the response.
const prompt = Prompt()
.text('List {{num}} books by the author {{author}}.')
.defaults({num: 3})
.schema({
type: 'array',
items: {
type: 'object',
properties: {
title: {type: 'string'},
year: {type: 'string'},
},
required: ['title', 'year'],
},
});
const result = await prompt.generate({author: 'George Orwell'});
The generate
method returns a Promise that resolves to the model's response if it matches the schema, or rejects with a validation error if the model's response doesn't match the schema.
The library supports strongly typed prompts, arguments, and return types when used with TypeScript. The Prompt
class supports generics to specify the expected arguments and return type.
Here's an example:
import {Prompt} from 'prompting';
type BookVars = {author: string};
type Book = {title: string, year: string};
const prompt = Prompt<BookVars, Book>()
.text('What is the most popular book by {{author}}?')
.schema({
type: 'object',
properties: {
title: {type: 'string'},
year: {type: 'string'},
},
required: ['title', 'year'],
});
const result: Book = await prompt.generate({author: 'George Orwell'});
In this example, the generate
method takes an argument of type BookVars
and returns a Promise that resolves to a Book
object, or rejects with a validation error if the model fails to generate a valid response.
Method | Description | Usage |
---|---|---|
Prompt(options?: PromptOptions) |
Creates a new instance of the Prompt class. | Prompt() |
text(template: string) |
Sets the text template for the prompt. | prompt.text('What is your favorite {{topic}}?') |
defaults(defaults: object) |
Sets default values for the variables in the text template. | prompt.defaults({topic: 'animal'}) |
schema(schema: object) |
Sets the JSON schema for validating the generated result. | prompt.schema({type: 'string'}) |
generate(vars?: object) |
Generates the final prompt text by replacing variables in the template, then executes the generator to get the AI response. | prompt.generate({color: 'red'}) |
vars(vars: object) |
Returns a copy of the Prompt with variables preset but does not generate the result, e.g. in order to call toString
|
prompt.vars({topic: 'animal'}) |
using(generator: Generator) |
Sets the generator for the prompt so that generate can be called. |
prompt.using(generator) |
toString() |
Returns the final prompt text by replacing variables in the template. | prompt.toString() |
toJSON() |
Returns the prompt as a JSON object, useful for serializing to a file or database. | prompt.toJSON() |
Property | Type | Description |
---|---|---|
text |
string | The text template for the prompt. |
defaults |
object | Default values for the variables in the text template. |
schema |
object | The JSON schema for validating the generated result. |
generator |
Generator | The generator instance to use for executing the prompt. |
Contributions to prompting
are welcome! To contribute, please fork the repository and make your changes, then submit a pull request.