react-native-tflite-classification
Run TensorFlow Lite models in React Native Android apps.
Example
Please see the example app to get started!
Installation
npm install react-native-tflite-classification
Usage
const RNFS = require('react-native-fs');
import { Tflite } from 'react-native-tflite-classification';
let tflite = new Tflite()
// load model
tflite.loadModel({
// internal storage path to model. This library supports both regular and quanitzed TensorFlow Lite models.
modelPath: '/Model/graph.lite',
// internal storage path to labels. Labels file must have each label on new line.
labelsPath: '/Model/labels.txt'
},
(err, res) => {
if (err)
console.log(err);
else
console.log(res);
}
);
);
// run an image against loaded model
tflite.runModelOnImage({
// image path must be a uri and the image must be square
path: 'file://' + RNFS.DocumentDirectoryPath + '/example.jpg',
// maximum number of results to return from model. Results are ordered by confidence
numResults: 10,
// only return results that pass a cretain threshold of confidence
threshold: 0
},
(err, res) => {
if (err)
console.log(err + '\n' + res);
else {
console.log(results);
}
});
// Releases all resources used by the model on the native side
tflite.close()
License
MIT