react-three-fiber
is a React renderer for Threejs on the web and react-native.
npm install three react-three-fiber
These demos are real, you can click them! They contain the full code, too.
Why?
Building dynamic scene graphs declaratively with re-usable components that respond to state changes and interactions makes handling Threejs easier and brings order and santiy to your codebase. This library is React based and therefore can participate in its near infitine eco system of components, tools and add-ons, many of which are cross platform ootb and can directly operate on your meshes and materials.
Does it have limitations?
None whatsoever! Everything that works in Threejs will work here. It just translates JSX to pure Threejs, similar to react-dom in relation to HTML. It does not target a specific version nor does it need updates when Threejs alters, adds or removes features. It won't change any specifics or rules.
Is it slower than raw Threejs?
No. Rendering performance is up to Threejs and the GPU, three-fiber drives a renderloop outside of React without overhead. React is otherwise very efficient in building and updating component-trees, which allows it to potentially outperform manual apps at scale.
What does it look like?
Let's make a re-usable component that has it's own state, reacts to user-input and participates in the render-loop: |
import ReactDOM from 'react-dom'import React useRef useState from 'react'import Canvas useFrame from 'react-three-fiber' { // This reference will give us direct access to the mesh const mesh = // Set up state for the hovered and active state const hovered setHover = const active setActive = // Rotate mesh every frame, this is outside of React without overhead return <mesh = = = = => <boxBufferGeometry ="geometry" = /> <meshStandardMaterial ="material" = /> </mesh> } ReactDOM
Here's the same running in a code sandbox.
How to proceed?
- Before you start, make sure you have a basic grasp of Threejs.
- When you know what a scene is, a camera, mesh, geometry and material, more or less, fork the sandbox above.
- Robert Borghesi's (@dghez_) Alligator.io tutorial will lead you through the next steps.
You can advance your knowledge by reading into Threejs-fundamentals and Discover Threejs. Looking into the source of the original threejs-examples couldn't hurt.
API
Canvas
The Canvas
object is your portal into Threejs. It renders Threejs elements, not DOM elements! It stretches to 100% of the next relative/absolute parent-container. Make sure your canvas is given space to show contents!
<Canvas // ( ) // // // // ., = // , . = // = // = // , 's options orthographic = false // Creates an orthographic camera if true noEvents = false // Switch off raytracing and event support pixelRatio = undefined // You could provide window.devicePixelRatio if you like invalidateFrameloop = false // When true it only renders on changes, when false it' = // // ( ) /> // Response for pointer clicks that have missed a target
You can give it additional properties like style and className, which will be added to the container (a div) that holds the dom-canvas element.
Defaults that the canvas component sets up
Canvas will create a translucent WebGL-renderer with the following properties: antialias, alpha, setClearAlpha(0)
A default perspective camera: fov: 75, near: 0.1, far: 1000, position.z: 5
A default orthographic camera if Canvas.orthographic is true: near: 0.1, far: 1000, position.z: 5
A default shadowMap if Canvas.shadowMap is true: type: PCFSoftShadowMap
A default scene (into which all the JSX is rendered) and a raycaster.
A wrapping container with a resize observer: scroll: true, debounce: { scroll: 50, resize: 0 }
You do not have to use any of these objects, look under "receipes" down below if you want to bring your own.
Objects and properties
You can use Threejs's entire object catalogue and all properties. When in doubt, always consult the docs.
You could lay out an object like this:
<mesh = = = = =/>
The problem is that all of these properties will always be re-created. Instead, you should define properties declaratively.
<mesh = = => <sphereGeometry ="geometry" = /> <meshStandardMaterial ="material" ="hotpink" /></mesh>
Shortcuts (set)
All properties that have a .set()
method can be given a shortcut. For example THREE.Color.set can take a color string, hence instead of color={new THREE.Color('hotpink')}
you can do color="hotpink"
. Some set
methods take multiple arguments (THREE.Vector3.set), so you can pass an array position={[100, 0, 0]}
.
Shortcuts and non-Object3D stow-away
Stow away non-Object3D primitives (geometries, materials, etc) into the render tree so that they become managed and reactive. They take the same properties they normally would, constructor arguments are passed with args
. Using the attach
property objects bind automatically to their parent and are taken off it once they unmount.
You can nest primitive objects, too:
<meshBasicMaterial ="material"> <texture ="map" = = />
Sometimes attaching isn't enough. For example, this code attaches effects to an array called "passes" of the parent effectComposer
. Note the use of attachArray
which adds the object to the target array and takes it out on unmount:
<effectComposer> <renderPass ="passes" = = /> <glitchPass ="passes" />
You can also attach to named parent properties using attachObject={[target, name]}
, which adds the object and takes it out on unmount. The following adds a buffer-attribute to parent.attributes.position.
<bufferGeometry ="geometry"> <bufferAttribute = = = = />
Piercing into nested properties
If you want to reach into nested attributes (for instance: mesh.rotation.x
), just use dash-case:
<mesh = = />
Putting already existing objects into the scene-graph
You can use the primitive
placeholder for that. You can still give it properties or attach nodes to it. Never add the same object multiples times, this is not allowed in Threejs!
const mesh = return <primitive = = />
Using 3rd-party (non THREE namespaced) objects in the scene-graph
The extend
function extends three-fibers catalogue of known native JSX elements.
import extend from 'react-three-fiber'import EffectComposer from 'three/examples/jsm/postprocessing/EffectComposer'import RenderPass from 'three/examples/jsm/postprocessing/RenderPass' <effectComposer> <renderPass />
Automatic disposal
Freeing resources is a manual chore in Threejs, but react is aware of object-lifecycles, hence three-fiber will attempt to free resources for you by calling object.dispose()
(if present) on all unmounted objects.
If you manage assets by yourself, globally or in a cache, this may not be what you want. You can recursively switch it off:
const globalGeometry = const globalMaterial = { return <mesh = = = />
Events
Threejs objects that implement their own raycast
method (meshes, lines, etc) can be interacted with by declaring events on the object. We support pointer events (you need to polyfill them yourself), clicks and wheel-scroll. Events contain the browser event as well as the Threejs event data (object, point, distance, etc).
Additionally there's a special onUpdate
that is called every time the object gets fresh props, which is good for things like self => (self.verticesNeedUpdate = true)
.
<mesh = = = = = = = = = =/>
Event data
...DomEvent // All the original event data ...ThreeEvent // All of Three's intersection data object: Object3D // The object that was actually hit eventObject: Object3D // The object that registered the event unprojectedPoint: Vector3 // Camera-unprojected point ray: Ray // The ray that was used to strike the object camera: Camera // The camera that was used in the raycaster sourceEvent: DomEvent // A reference to the host event delta: number // Initial-click delta ...
Propagation and capturing
onPointerDown= { // Only the mesh closest to the camera will be processed e // You may optionally capture the target etarget } onPointerUp= { e // Optionally release capture etarget }
Hooks
Hooks can only be used inside the Canvas element because they rely on context! You cannot expect something like this to work:
{ const size = // This will just crash return <Canvas> <mesh>
Do this instead:
{ const size = return <mesh />} { return <Canvas> <SomeComponent />
useThree(): SharedCanvasContext
This hooks gives you access to all the basic objects that are kept internally, like the default renderer, scene, camera. It also gives you the current size of the canvas in screen and viewport coordinates. The hook is reactive, if you resize the browser, for instance, and you get fresh measurements, same applies to any of the defaults you can change.
import useThree from 'react-three-fiber' const gl // WebGL renderer scene // Default scene camera // Default camera size // Bounds of the view (which stretches 100% and auto-adjusts) viewport // Bounds of the viewport in 3d units + factor (size/viewport) aspect // Aspect ratio (size.width / size.height) mouse // Current 2D mouse coordinates clock // THREE.Clock (useful for useFrame deltas) invalidate // Invalidates a single frame (for <Canvas invalidateFrameloop />) intersect // Calls onMouseMove handlers for objects underneath the cursor setDefaultCamera // Sets the default camera} =
useFrame(callback: (state, delta) => void, renderPriority: number = 0)
This hooks calls you back every frame, which is good for running effects, updating controls, etc. You receive the state (same as useThree) and a clock delta. If you supply a render priority greater than zero it will switch off automatic rendering entirely, you can then control rendering yourself. If you have multiple frames with a render priority then they are ordered highest priority last, similar to the web's z-index. Frames are managed, three-fiber will remove them automatically when the component that holds them is unmounted.
Updating controls:
import useFrame from 'react-three-fiber' const controls = return <orbitControls = />
Taking over the render-loop:
useResource(optionalRef=undefined)
When you want to share and re-use resources. useResource
creates a ref and re-renders the component when it becomes available next frame.
import useResource from 'react-three-fiber' const ref material = return <meshBasicMaterial = /> material && <mesh = /> <mesh = /> <mesh = />
useUpdate(callback, dependencies, optionalRef=undefined)
When objects need to be updated imperatively.
import useUpdate from 'react-three-fiber' const ref = return <bufferGeometry = />
useLoader(loader, url: string | string[], extensions?) (experimental!)
This hooks loads assets and suspends for easier fallback- and error-handling. If you need to lay out GLTF's declaratively check out gltfjsx.
import React Suspense from 'react'import useLoader from 'react-three-fiber'import GLTFLoader from 'three/examples/jsm/loaders/GLTFLoader' { const gltf = return <primitive = = />} <Suspense => <Asset ="/spaceship.gltf" /></Suspense>
You can provide a callback if you need to configure your loader:
import DRACOLoader from 'three/examples/jsm/loaders/DRACOLoader'
It can also make multiple requests in parallel:
const bumpMap specMap normalMap =
useCamera(camera, props) (experimental!)
This is a special purpose hook for the rare case when you are using non-default cameras for heads-up-displays or portals, and you need events/raytracing to function properly (raycasting uses the default camera otherwise).
import useCamera from 'react-three-fiber' <mesh = =>
Additional exports
import addEffect // Adds a global callback which is called each frame addTail // Adds a global callback which is called when rendering stops invalidate // Forces view global invalidation extend // Extends the native-object catalogue createPortal // Creates a portal (it's a React feature for re-parenting) render // Internal: Renders three jsx into a scene unmountComponentAtNode // Internal: Unmounts root scene applyProps // Internal: Sets element properties Dom // Project HTML content from 'react-three-fiber'
Dom (experimental, web-only!)
Sometimes you want to project dom-content on top (or underneath) of the canvas. The experimental Dom
component behaves like an empty THREE.Group
internally, you can transform and nest it inside the canvas. It's children on the other hand will be rendered into a div element and projected to the groups whereabouts.
<Dom // , , , , = // = // -%/-% // , // .. // .. ... />
import Canvas Dom from 'react-three-fiber' <Canvas> <Dom => <h1>hello world!</h1> </Dom></Canvas>
Links
News and examples via Twitter: @0xca0a
Recipes and FAQ: /react-three-fiber/recipes.md
GLTF-to-JSX converter: https://github.com/react-spring/gltfjsx
How to contribute
If you like this project, please consider helping out. All contributions are welcome as well as donations to Opencollective, or in crypto:
BTC: 36fuguTPxGCNnYZSRdgdh6Ea94brCAjMbH
ETH: 0x6E3f79Ea1d0dcedeb33D3fC6c34d2B1f156F2682
Sponsors
Backers
Thank you to all our backers! 🙏
Contributors
This project exists thanks to all the people who contribute.