A browser-compatible fork of (sshpk
)[https://github.com/joyent/node-sshpk]
Parse, convert, fingerprint and use SSH keys (both public and private) in pure
node -- no ssh-keygen
or other external dependencies.
Supports RSA, DSA, ECDSA (nistp-*) and ED25519 key types, in PEM (PKCS#1, PKCS#8) and OpenSSH formats.
This library has been extracted from
node-http-signature
(work by Mark Cavage and
Dave Eddy) and
node-ssh-fingerprint
(work by Dave Eddy), with additions (including ECDSA support) by
Alex Wilson.
npm install sshpk-browser
var sshpk = require('sshpk-browser');
var fs = require('fs');
/* Read in an OpenSSH-format public key */
var keyPub = fs.readFileSync('id_rsa.pub');
var key = sshpk.parseKey(keyPub, 'ssh');
/* Get metadata about the key */
console.log('type => %s', key.type);
console.log('size => %d bits', key.size);
console.log('comment => %s', key.comment);
/* Compute key fingerprints, in new OpenSSH (>6.7) format, and old MD5 */
console.log('fingerprint => %s', key.fingerprint().toString());
console.log('old-style fingerprint => %s', key.fingerprint('md5').toString());
Example output:
type => rsa
size => 2048 bits
comment => foo@foo.com
fingerprint => SHA256:PYC9kPVC6J873CSIbfp0LwYeczP/W4ffObNCuDJ1u5w
old-style fingerprint => a0:c8:ad:6c:32:9a:32:fa:59:cc:a9:8c:0a:0d:6e:bd
More examples: converting between formats:
/* Read in a PEM public key */
var keyPem = fs.readFileSync('id_rsa.pem');
var key = sshpk.parseKey(keyPem, 'pem');
/* Convert to PEM PKCS#8 public key format */
var pemBuf = key.toBuffer('pkcs8');
/* Convert to SSH public key format (and return as a string) */
var sshKey = key.toString('ssh');
Signing and verifying:
/* Read in an OpenSSH/PEM *private* key */
var keyPriv = fs.readFileSync('id_ecdsa');
var key = sshpk.parsePrivateKey(keyPriv, 'pem');
var data = 'some data';
/* Sign some data with the key */
var s = key.createSign('sha1');
s.update(data);
var signature = s.sign();
/* Now load the public key (could also use just key.toPublic()) */
var keyPub = fs.readFileSync('id_ecdsa.pub');
key = sshpk.parseKey(keyPub, 'ssh');
/* Make a crypto.Verifier with this key */
var v = key.createVerify('sha1');
v.update(data);
var valid = v.verify(signature);
/* => true! */
Matching fingerprints with keys:
var fp = sshpk.parseFingerprint('SHA256:PYC9kPVC6J873CSIbfp0LwYeczP/W4ffObNCuDJ1u5w');
var keys = [sshpk.parseKey(...), sshpk.parseKey(...), ...];
keys.forEach(function (key) {
if (fp.matches(key))
console.log('found it!');
});
Parses a key from a given data format and returns a new Key
object.
Parameters
-
data
-- Either a Buffer or String, containing the key -
format
-- String name of format to use, valid options are:-
auto
: choose automatically from all below -
pem
: supports both PKCS#1 and PKCS#8 -
ssh
: standard OpenSSH format, -
pkcs1
,pkcs8
: variants ofpem
-
rfc4253
: raw OpenSSH wire format -
openssh
: new post-OpenSSH 6.5 internal format, produced byssh-keygen -o
-
dnssec
:.key
file format output bydnssec-keygen
etc -
putty
: the PuTTY.ppk
file format (supports truncated variant without all the lines fromPrivate-Lines:
onwards)
-
-
options
-- Optional Object, extra options, with keys:-
filename
-- Optional String, name for the key being parsed (eg. the filename that was opened). Used to generate Error messages -
passphrase
-- Optional String, encryption passphrase used to decrypt an encrypted PEM file
-
Returns true
if the given object is a valid Key
object created by a version
of sshpk
compatible with this one.
Parameters
-
obj
-- Object to identify
String, the type of key. Valid options are rsa
, dsa
, ecdsa
.
Integer, "size" of the key in bits. For RSA/DSA this is the size of the modulus; for ECDSA this is the bit size of the curve in use.
Optional string, a key comment used by some formats (eg the ssh
format).
Only present if this.type === 'ecdsa'
, string containing the name of the
named curve used with this key. Possible values include nistp256
, nistp384
and nistp521
.
Convert the key into a given data format and return the serialized key as a Buffer.
Parameters
-
format
-- String name of format to use, for valid options seeparseKey()
Same as this.toBuffer(format).toString()
.
Creates a new Fingerprint
object representing this Key's fingerprint.
Parameters
-
algorithm
-- String name of hash algorithm to use, valid options aremd5
,sha1
,sha256
,sha384
,sha512
-
hashType
-- String name of fingerprint hash type to use, valid options aressh
(the type of fingerprint used by OpenSSH, e.g. inssh-keygen
),spki
(used by HPKP, some OpenSSL applications)
Creates a crypto.Verifier
specialized to use this Key (and the correct public
key algorithm to match it). The returned Verifier has the same API as a regular
one, except that the verify()
function takes only the target signature as an
argument.
Parameters
-
hashAlgorithm
-- optional String name of hash algorithm to use, any supported by OpenSSL are valid, usually includingsha1
,sha256
.
v.verify(signature[, format])
Parameters
-
signature
-- either a Signature object, or a Buffer or String -
format
-- optional String, name of format to interpret given String with. Not valid ifsignature
is a Signature or Buffer.
Creates a Diffie-Hellman key exchange object initialized with this key and all
necessary parameters. This has the same API as a crypto.DiffieHellman
instance, except that functions take Key
and PrivateKey
objects as
arguments, and return them where indicated for.
This is only valid for keys belonging to a cryptosystem that supports DHE
or a close analogue (i.e. dsa
, ecdsa
and curve25519
keys). An attempt
to call this function on other keys will yield an Error
.
Parses a private key from a given data format and returns a new
PrivateKey
object.
Parameters
-
data
-- Either a Buffer or String, containing the key -
format
-- String name of format to use, valid options are:-
auto
: choose automatically from all below -
pem
: supports both PKCS#1 and PKCS#8 -
ssh
,openssh
: new post-OpenSSH 6.5 internal format, produced byssh-keygen -o
-
pkcs1
,pkcs8
: variants ofpem
-
rfc4253
: raw OpenSSH wire format -
dnssec
:.private
format output bydnssec-keygen
etc.
-
-
options
-- Optional Object, extra options, with keys:-
filename
-- Optional String, name for the key being parsed (eg. the filename that was opened). Used to generate Error messages -
passphrase
-- Optional String, encryption passphrase used to decrypt an encrypted PEM file
-
Generates a new private key of a certain key type, from random data.
Parameters
-
type
-- String, type of key to generate. Currently supported are'ecdsa'
and'ed25519'
-
options
-- optional Object, with keys:-
curve
-- optional String, for'ecdsa'
keys, specifies the curve to use. If ECDSA is specified and this option is not given, defaults to using'nistp256'
.
-
Returns true
if the given object is a valid PrivateKey
object created by a
version of sshpk
compatible with this one.
Parameters
-
obj
-- Object to identify
String, the type of key. Valid options are rsa
, dsa
, ecdsa
.
Integer, "size" of the key in bits. For RSA/DSA this is the size of the modulus; for ECDSA this is the bit size of the curve in use.
Only present if this.type === 'ecdsa'
, string containing the name of the
named curve used with this key. Possible values include nistp256
, nistp384
and nistp521
.
Convert the key into a given data format and return the serialized key as a Buffer.
Parameters
-
format
-- String name of format to use, valid options are listed underparsePrivateKey
. Note that ED25519 keys default toopenssh
format instead (as they have nopkcs1
representation).
Same as this.toBuffer(format).toString()
.
Extract just the public part of this private key, and return it as a Key
object.
Same as this.toPublic().fingerprint()
.
Same as this.toPublic().createVerify()
.
Creates a crypto.Sign
specialized to use this PrivateKey (and the correct
key algorithm to match it). The returned Signer has the same API as a regular
one, except that the sign()
function takes no arguments, and returns a
Signature
object.
Parameters
-
hashAlgorithm
-- optional String name of hash algorithm to use, any supported by OpenSSL are valid, usually includingsha1
,sha256
.
v.sign()
Parameters
- none
Derives a related key of type newType
from this key. Currently this is
only supported to change between ed25519
and curve25519
keys which are
stored with the same private key (but usually distinct public keys in order
to avoid degenerate keys that lead to a weak Diffie-Hellman exchange).
Parameters
-
newType
-- String, type of key to derive, eithered25519
orcurve25519
Pre-parses a fingerprint, creating a Fingerprint
object that can be used to
quickly locate a key by using the Fingerprint#matches
function.
Parameters
-
fingerprint
-- String, the fingerprint value, in any supported format -
options
-- Optional Object, with properties:-
algorithms
-- Array of strings, names of hash algorithms to limit support to. Iffingerprint
uses a hash algorithm not on this list, throwsInvalidAlgorithmError
. -
hashType
-- String, the type of hash the fingerprint uses, eitherssh
orspki
(normally auto-detected based on the format, but can be overridden) -
type
-- String, the entity this fingerprint identifies, eitherkey
orcertificate
-
Returns true
if the given object is a valid Fingerprint
object created by a
version of sshpk
compatible with this one.
Parameters
-
obj
-- Object to identify
Returns a fingerprint as a string, in the given format.
Parameters
-
format
-- Optional String, format to use, valid options arehex
andbase64
. If thisFingerprint
uses themd5
algorithm, the default format ishex
. Otherwise, the default isbase64
.
Verifies whether or not this Fingerprint
matches a given Key
or
Certificate
. This function uses double-hashing to avoid leaking timing
information. Returns a boolean.
Note that a Key
-type Fingerprint will always return false
if asked to match
a Certificate
and vice versa.
Parameters
-
keyOrCertificate
-- aKey
object orCertificate
object, the entity to match this fingerprint against
Parses a signature in a given format, creating a Signature
object. Useful
for converting between the SSH and ASN.1 (PKCS/OpenSSL) signature formats, and
also returned as output from PrivateKey#createSign().sign()
.
A Signature object can also be passed to a verifier produced by
Key#createVerify()
and it will automatically be converted internally into the
correct format for verification.
Parameters
-
signature
-- a Buffer (binary) or String (base64), data of the actual signature in the given format -
algorithm
-- a String, name of the algorithm to be used, possible values arersa
,dsa
,ecdsa
-
format
-- a String, eitherasn1
orssh
Returns true
if the given object is a valid Signature
object created by a
version of sshpk
compatible with this one.
Parameters
-
obj
-- Object to identify
Converts a Signature to the given format and returns it as a Buffer.
Parameters
-
format
-- a String, eitherasn1
orssh
Same as this.toBuffer(format).toString('base64')
.
sshpk
includes basic support for parsing certificates in X.509 (PEM) format
and the OpenSSH certificate format. This feature is intended to be used mainly
to access basic metadata about certificates, extract public keys from them, and
also to generate simple self-signed certificates from an existing key.
Notably, there is no implementation of CA chain-of-trust verification, and only very minimal support for key usage restrictions. Please do the security world a favour, and DO NOT use this code for certificate verification in the traditional X.509 CA chain style.
Parameters
-
data
-- a Buffer or String -
format
-- a String, format to use, one of'openssh'
,'pem'
(X.509 in a PEM wrapper), or'x509'
(raw DER encoded)
Parameters
-
subject
-- an Identity, the subject of the certificate -
privateKey
-- a PrivateKey, the key of the subject: will be used both to be placed in the certificate and also to sign it (since this is a self-signed certificate) -
options
-- optional Object, with keys:-
lifetime
-- optional Number, lifetime of the certificate from now in seconds -
validFrom
,validUntil
-- optional Dates, beginning and end of certificate validity period. If givenlifetime
will be ignored -
serial
-- optional Buffer, the serial number of the certificate -
purposes
-- optional Array of String, X.509 key usage restrictions
-
Parameters
-
subject
-- an Identity, the subject of the certificate -
key
-- a Key, the public key of the subject -
issuer
-- an Identity, the issuer of the certificate who will sign it -
issuerKey
-- a PrivateKey, the issuer's private key for signing -
options
-- optional Object, with keys:-
lifetime
-- optional Number, lifetime of the certificate from now in seconds -
validFrom
,validUntil
-- optional Dates, beginning and end of certificate validity period. If givenlifetime
will be ignored -
serial
-- optional Buffer, the serial number of the certificate -
purposes
-- optional Array of String, X.509 key usage restrictions
-
Array of Identity
instances describing the subject of this certificate.
The Identity
of the Certificate's issuer (signer).
The public key of the subject of the certificate, as a Key
instance.
The public key of the signing issuer of this certificate, as a Key
instance.
May be undefined
if the issuer's key is unknown (e.g. on an X509 certificate).
The serial number of the certificate. As this is normally a 64-bit or wider integer, it is returned as a Buffer.
Array of Strings indicating the X.509 key usage purposes that this certificate is valid for. The possible strings at the moment are:
-
'signature'
-- key can be used for digital signatures -
'identity'
-- key can be used to attest about the identity of the signer (X.509 calls thisnonRepudiation
) -
'codeSigning'
-- key can be used to sign executable code -
'keyEncryption'
-- key can be used to encrypt other keys -
'encryption'
-- key can be used to encrypt data (only applies for RSA) -
'keyAgreement'
-- key can be used for key exchange protocols such as Diffie-Hellman -
'ca'
-- key can be used to sign other certificates (is a Certificate Authority) -
'crl'
-- key can be used to sign Certificate Revocation Lists (CRLs)
Retrieves information about a certificate extension, if present, or returns
undefined
if not. The string argument nameOrOid
should be either the OID
(for X509 extensions) or the name (for OpenSSH extensions) of the extension
to retrieve.
The object returned will have the following properties:
-
format
-- String, set to either'x509'
or'openssh'
-
name
oroid
-- String, only one set based on value offormat
-
data
-- Buffer, the raw data inside the extension
Returns an Array of all present certificate extensions, in the same manner and
format as getExtension()
.
Tests whether the Certificate is currently expired (i.e. the validFrom
and
validUntil
dates specify a range of time that does not include the current
time).
Parameters
-
when
-- optional Date, if specified, tests whether the Certificate was or will be expired at the specified time instead of now
Returns a Boolean.
Tests whether the Certificate was validly signed by the given (public) Key.
Parameters
-
key
-- a Key instance
Returns a Boolean.
Tests whether this Certificate was validly signed by the subject of the given certificate. Also tests that the issuer Identity of this Certificate and the subject Identity of the other Certificate are equivalent.
Parameters
-
certificate
-- another Certificate instance
Returns a Boolean.
Returns the X509-style fingerprint of the entire certificate (as a Fingerprint instance). This matches what a web-browser or similar would display as the certificate fingerprint and should not be confused with the fingerprint of the subject's public key.
Parameters
-
hashAlgo
-- an optional String, any hash function name
Serializes the Certificate to a Buffer and returns it.
Parameters
-
format
-- an optional String, output format, one of'openssh'
,'pem'
or'x509'
. Defaults to'x509'
.
Returns a Buffer.
-
format
-- an optional String, output format, one of'openssh'
,'pem'
or'x509'
. Defaults to'pem'
.
Returns a String.
Constructs a host-type Identity for a given hostname.
Parameters
-
hostname
-- the fully qualified DNS name of the host
Returns an Identity instance.
Constructs a user-type Identity for a given UID.
Parameters
-
uid
-- a String, user identifier (login name)
Returns an Identity instance.
Constructs an email-type Identity for a given email address.
Parameters
-
email
-- a String, email address
Returns an Identity instance.
Parses an LDAP-style DN string (e.g. 'CN=foo, C=US'
) and turns it into an
Identity instance.
Parameters
-
dn
-- a String
Returns an Identity instance.
Constructs an Identity from an array of DN components (see Identity#toArray()
for the format).
Parameters
-
arr
-- an Array of Objects, DN components withname
andvalue
Returns an Identity instance.
Supported attributes in DNs:
Attribute name | OID |
---|---|
cn |
2.5.4.3 |
o |
2.5.4.10 |
ou |
2.5.4.11 |
l |
2.5.4.7 |
s |
2.5.4.8 |
c |
2.5.4.6 |
sn |
2.5.4.4 |
postalCode |
2.5.4.17 |
serialNumber |
2.5.4.5 |
street |
2.5.4.9 |
x500UniqueIdentifier |
2.5.4.45 |
role |
2.5.4.72 |
telephoneNumber |
2.5.4.20 |
description |
2.5.4.13 |
dc |
0.9.2342.19200300.100.1.25 |
uid |
0.9.2342.19200300.100.1.1 |
mail |
0.9.2342.19200300.100.1.3 |
title |
2.5.4.12 |
gn |
2.5.4.42 |
initials |
2.5.4.43 |
pseudonym |
2.5.4.65 |
Returns the identity as an LDAP-style DN string.
e.g. 'CN=foo, O=bar corp, C=us'
The type of identity. One of 'host'
, 'user'
, 'email'
or 'unknown'
Set when type
is 'host'
, 'user'
, or 'email'
, respectively. Strings.
The value of the first CN=
in the DN, if any. It's probably better to use
the #get()
method instead of this property.
Returns the value of a named attribute in the Identity DN. If there is no
attribute of the given name, returns undefined
. If multiple components
of the DN contain an attribute of this name, an exception is thrown unless
the asArray
argument is given as true
-- then they will be returned as
an Array in the same order they appear in the DN.
Parameters
-
name
-- a String -
asArray
-- an optional Boolean
Returns the Identity as an Array of DN component objects. This looks like:
[ {
"name": "cn",
"value": "Joe Bloggs"
},
{
"name": "o",
"value": "Organisation Ltd"
} ]
Each object has a name
and a value
property. The returned objects may be
safely modified.
The specified algorithm is not valid, either because it is not supported, or because it was not included on a list of allowed algorithms.
Thrown by Fingerprint.parse
, Key#fingerprint
.
Properties
-
algorithm
-- the algorithm that could not be validated
The fingerprint string given could not be parsed as a supported fingerprint format, or the specified fingerprint format is invalid.
Thrown by Fingerprint.parse
, Fingerprint#toString
.
Properties
-
fingerprint
-- if caused by a fingerprint, the string value given -
format
-- if caused by an invalid format specification, the string value given
The key data given could not be parsed as a valid key.
Properties
-
keyName
--filename
that was given toparseKey
-
format
-- theformat
that was trying to parse the key (seeparseKey
) -
innerErr
-- the inner Error thrown by the format parser
The key is encrypted with a symmetric key (ie, it is password protected). The
parsing operation would succeed if it was given the passphrase
option.
Properties
-
keyName
--filename
that was given toparseKey
-
format
-- theformat
that was trying to parse the key (currently can only be"pem"
)
The certificate data given could not be parsed as a valid certificate.
Properties
-
certName
--filename
that was given toparseCertificate
-
format
-- theformat
that was trying to parse the key (seeparseCertificate
) -
innerErr
-- the inner Error thrown by the format parser
-
sshpk-agent
is a library for speaking thessh-agent
protocol from node.js, which usessshpk