xml-crypto
An xml digital signature library for node. Xml encryption is coming soon. Written in pure javascript!
For more information visit my blog or my twitter.
Install
Install with npm:
npm install xml-crypto
A pre requisite it to have openssl installed and its /bin to be on the system path. I used version 1.0.1c but it should work on older versions too.
Supported Algorithms
Canonicalization and Transformation Algorithms
- Canonicalization http://www.w3.org/TR/2001/REC-xml-c14n-20010315
- Canonicalization with comments http://www.w3.org/TR/2001/REC-xml-c14n-20010315#WithComments
- Exclusive Canonicalization http://www.w3.org/2001/10/xml-exc-c14n#
- Exclusive Canonicalization with comments http://www.w3.org/2001/10/xml-exc-c14n#WithComments
- Enveloped Signature transform http://www.w3.org/2000/09/xmldsig#enveloped-signature
Hashing Algorithms
- SHA1 digests http://www.w3.org/2000/09/xmldsig#sha1
- SHA256 digests http://www.w3.org/2001/04/xmlenc#sha256
- SHA512 digests http://www.w3.org/2001/04/xmlenc#sha512
Signature Algorithms
- RSA-SHA1 http://www.w3.org/2000/09/xmldsig#rsa-sha1
- RSA-SHA256 http://www.w3.org/2001/04/xmldsig-more#rsa-sha256
- RSA-SHA512 http://www.w3.org/2001/04/xmldsig-more#rsa-sha512
- HMAC-SHA1 http://www.w3.org/2000/09/xmldsig#hmac-sha1
by default the following algorithms are used:
Canonicalization/Transformation Algorithm: Exclusive Canonicalization http://www.w3.org/2001/10/xml-exc-c14n#
Hashing Algorithm: SHA1 digest http://www.w3.org/2000/09/xmldsig#sha1
Signature Algorithm: RSA-SHA1 http://www.w3.org/2000/09/xmldsig#rsa-sha1
You are able to extend xml-crypto with custom algorithms.
Signing Xml documents
When signing a xml document you can specify the following properties on a SignedXml
instance to customize the signature process:
sign.signingKey
- [required] aBuffer
or pem encodedString
containing your private keysign.keyInfoProvider
- [optional] a key info provider instance, see customizing algorithms for an implementation examplesign.signatureAlgorithm
- [optional] one of the supported signature algorithms. Ex:sign.signatureAlgorithm = "http://www.w3.org/2001/04/xmldsig-more#rsa-sha256"
sign.canonicalizationAlgorithm
- [optional] one of the supported canonicalization algorithms. Ex:sign.canonicalizationAlgorithm = "http://www.w3.org/2001/10/xml-exc-c14n#WithComments"
Use this code:
var SignedXml = SignedXml fs = var xml = "<library>" + "<book>" + "<name>Harry Potter</name>" + "</book>" + "</library>" var sig = sig sigsigningKey = fs sig fs
The result will be:
Harry Potter cdiS43aFDQMnb3X8yaIUej3+z9Q= vhWzpQyIYuncHUZV9W...[long base64 removed]...
Note:
To generate a <X509Data></X509Data>
element in the signature you must provide a key info implementation, see customizing algorithms for an example.
Verifying Xml documents
When verifying a xml document you must specify the following properties on a ``SignedXml` instance:
sign.keyInfoProvider
- [required] a key info provider instance containing your certificate, see customizing algorithms for an implementation example
You can use any dom parser you want in your code (or none, depending on your usage). This sample uses xmldom so you should install it first:
npm install xmldom
Example:
var select = xpath dom = DOMParser SignedXml = SignedXml FileKeyInfo = FileKeyInfo fs = var xml = fs var doc = var signature = 0 var sig = sigkeyInfoProvider = fs sig var res = sig if !res console
if the verification process fails sig.validationErrors
will have the errors.
In order to protect from some attacks we must check the content we want to use is the one that has been signed:
var elem = ; var uri = sigreferences0uri; // might not be 0 - depending on the document you verify var id = uri0 === '#' ? uri : uri; if elem != id && elem != id && elem != id throw 'the interesting element was not the one verified by the signature'
Note:
The xml-crypto api requires you to supply it separately the xml signature ("<Signature>...</Signature>", in loadSignature) and the signed xml (in checkSignature). The signed xml may or may not contain the signature in it, but you are still required to supply the signature separately.
Caring for Implicit transform
If you fail to verify signed XML, then one possible cause is that there are some hidden implicit transforms(#).
(#) Normalizing XML document to be verified. i.e. remove extra space within a tag, sorting attributes, importing namespace declared in ancestor nodes, etc.
The reason for these implicit transform might come from complex xml signature specification, which makes XML developers confused and then leads to incorrect implementation for signing XML document.
If you keep failing verification, it is worth trying to guess such a hidden transform and specify it to the option as below:
var option = implicitTransforms: "http://www.w3.org/TR/2001/REC-xml-c14n-20010315"var sig = null optionsigkeyInfoProvider = fssigvar res = sig
You might find it difficult to guess such transforms, but there are typical transforms you can try.
- http://www.w3.org/TR/2001/REC-xml-c14n-20010315
- http://www.w3.org/TR/2001/REC-xml-c14n-20010315#WithComments
- http://www.w3.org/2001/10/xml-exc-c14n#
- http://www.w3.org/2001/10/xml-exc-c14n#WithComments
API
xpath
See xpath.js for usage. Note that this is actually using another library as the underlying implementation.
SignedXml
The SignedXml
constructor provides an abstraction for sign and verify xml documents. The object is constructed using new SignedXml([idMode])
where:
idMode
- if the value of"wssecurity"
is passed it will create/validate id's with the ws-security namespace.
API
A SignedXml
object provides the following methods:
To sign xml documents:
addReference(xpath, [transforms], [digestAlgorithm])
- adds a reference to a xml element where:xpath
- a string containing a XPath expression referencing a xml elementtransforms
- an array of transform algorithms, the referenced element will be transformed for each value in the arraydigestAlgorithm
- one of the supported hashing algorithms
computeSignature(xml, [options])
- compute the signature of the given xml where:xml
- a string containing a xml documentoptions
- an object with the following properties:prefix
- adds this value as a prefix for the generated signature tagsattrs
- a hash of attributes and valuesattrName: value
to add to the signature root nodelocation
- customize the location of the signature, pass an object with areference
key which should contain a XPath expression to a reference node, anaction
key which should contain one of the following values:append
,prepend
,before
,after
existingPrefixes
- A hash of prefixes and namespacesprefix: namespace
that shouldn't be in the signature because they already exist in the xml
getSignedXml()
- returns the original xml document with the signature in it, must be called only aftercomputeSignature
getSignatureXml()
- returns just the signature part, must be called only aftercomputeSignature
getOriginalXmlWithIds()
- returns the original xml with Id attributes added on relevant elements (required for validation), must be called only aftercomputeSignature
To verify xml documents:
loadSignature(signatureXml)
- loads the signature where:signatureXml
- a string or node object (like an xml-dom node) containing the xml representation of the signature
checkSignature(xml)
- validates the given xml document and returns true if the validation was successful,sig.validationErrors
will have the validation errors if any, where:xml
- a string containing a xml document
FileKeyInfo
A basic key info provider implementation using fs.readFileSync(file)
, is constructed using new FileKeyInfo([fileContents])
where:
file
- a path to a pem encoded certificate
See verifying xml documents for an example usage
Customizing Algorithms
The following sample shows how to sign a message using custom algorithms.
First import some modules:
var SignedXml = SignedXml fs =
Now define the extension point you want to implement. You can choose one or more.
A key info provider is used to extract and construct the key and the KeyInfo xml section. Implement it if you want to create a signature with a KeyInfo section, or you want to read your key in a different way then the default file read option.
/**/ { this { prefix = prefix || '' prefix = prefix ? prefix + ':' : prefix return "<" + prefix + "X509Data></" + prefix + "X509Data>" } this { //you can use the keyInfo parameter to extract the key in any way you want return fs } }
A custom hash algorithm is used to calculate digests. Implement it if you want a hash other than the default SHA1.
{ this { return "the base64 hash representation of the given xml string" } this { return "http://myDigestAlgorithm" } }
A custom signing algorithm. The default is RSA-SHA1
{ /*sign the given SignedInfo using the key. return base64 signature value*/ this { return "signature of signedInfo as base64..." } this { return "http://mySigningAlgorithm" } }
Custom transformation algorithm. The default is exclusive canonicalization.
{ /*given a node (from the xmldom module) return its canonical representation (as string)*/ this { //you should apply your transformation before returning return node } this { return "http://myTransformation" } }
Custom canonicalization is actually the same as custom transformation. It is applied on the SignedInfo rather than on references.
{ /*given a node (from the xmldom module) return its canonical representation (as string)*/ this { //you should apply your transformation before returning return "< x/>" } this { return "http://myCanonicalization" } }
Now you need to register the new algorithms:
/*register all the custom algorithms*/ SignedXmlCanonicalizationAlgorithms"http://MyTransformation" = MyTransformation SignedXmlCanonicalizationAlgorithms"http://MyCanonicalization" = MyCanonicalization SignedXmlHashAlgorithms"http://myDigestAlgorithm" = MyDigest SignedXmlSignatureAlgorithms"http://mySigningAlgorithm" = MySignatureAlgorithm
Now do the signing. Note how we configure the signature to use the above algorithms:
{ var sig = /*configure the signature object to use the custom algorithms*/ sigsignatureAlgorithm = "http://mySignatureAlgorithm" sigkeyInfoProvider = sigcanonicalizationAlgorithm = "http://MyCanonicalization" sig sigsigningKey = fs sig sig fs } var xml = "<library>" + "<book>" + "<name>Harry Potter</name>" + "</book>" "</library>"
You can always look at the actual code as a sample (or drop me a mail).
X.509 / Key formats
Xml-Crypto internally relies on node's crypto module. This means pem encoded certificates are supported. So to sign an xml use key.pem that looks like this (only the begining of the key content is shown):
-----BEGIN PRIVATE KEY-----
MIICdwIBADANBgkqhkiG9w0...
-----END PRIVATE KEY-----
And for verification use key_public.pem:
-----BEGIN CERTIFICATE-----
MIIBxDCCAW6gAwIBAgIQxUSX...
-----END CERTIFICATE-----
Converting .pfx certificates to pem
If you have .pfx certificates you can convert them to .pem using openssl:
openssl pkcs12 -in c:\certs\yourcert.pfx -out c:\certs\cag.pem
Then you could use the result as is for the purpose of signing. For the purpose of validation open the resulting .pem with a text editor and copy from -----BEGIN CERTIFICATE----- to -----END CERTIFICATE----- (including) to a new text file and save it as .pem.
Examples
- how to sign a root node coming soon
how to add a prefix for the signature###
Use the prefix
option when calling computeSignature
to add a prefix to the signature.
var SignedXml = SignedXml fs = ; var xml = "<library>" + "<book>" + "<name>Harry Potter</name>" + "</book>" + "</library>"; var sig = ;sig;sigsigningKey = fs;sig;
how to specify the location of the signature###
Use the location
option when calling computeSignature
to move the signature around.
Set action
to one of the following:
- append(default) - append to the end of the xml document
- prepend - prepend to the xml document
- before - prepend to a specific node (use the
referenceNode
property) - after - append to specific node (use the
referenceNode
property)
var SignedXml = SignedXml fs = ; var xml = "<library>" + "<book>" + "<name>Harry Potter</name>" + "</book>" + "</library>"; var sig = ;sig;sigsigningKey = fs;sig;
more examples coming soon
Development
The test framework is nodeunit. To run tests use:
$> npm test
More information
License
This project is licensed under the MIT License. See the LICENSE file for more info.