@convex-dev/action-cache
TypeScript icon, indicating that this package has built-in type declarations

0.2.2 • Public • Published

Convex Action Cache Component

npm version

Sometimes your app needs to fetch information from a third-party API that is slow or costs money. Caching can help! This is a Convex component that can cache the results of expensive functions and set an optional TTL. Expired entries are cleaned up via a cron job once a day. The cache key is the ActionCache's name (defaults to function name) and the arguments to the action that generates the cache values.

import { action } from "./_generated/server";
import { components } from "./_generated/api";
import { ActionCache } from "@convex-dev/action-cache";

const cache = new ActionCache(components.actionCache, {
  action: internal.example.myExpensiveAction,
});

export const myFunction = action({
  handler: async (ctx, args) => {
    // Call it with the parameters to `myExpensiveAction`
    await cache.fetch(ctx, { foo: "bar" });
  },
});

export const myExpensiveAction = internalAction({
  args: { foo: v.string() },
  handler: async (ctx, args) {
    const data = await generateLLMResponse(ctx, args);
    return data;
  }
})

To invalidate the cache, you can set a new name explicitly and/or clear cached values by name.

Pre-requisite: Convex

You'll need an existing Convex project to use the component. Convex is a hosted backend platform, including a database, serverless functions, and a ton more you can learn about here.

Run npm create convex or follow any of the quickstarts to set one up.

Installation

Install the component package:

npm install @convex-dev/action-cache

Create a convex.config.ts file in your app's convex/ folder and install the component by calling use:

// convex/convex.config.ts
import { defineApp } from "convex/server";
import cache from "@convex-dev/action-cache/convex.config";

const app = defineApp();
app.use(cache);

export default app;

Finally, create a new ActionCache with optional name and expiration within your Convex project, and point it to the installed component.

  • The name field can be used for identifying the function or version being used to create the values in the cache and can also be used for grouping entries to remove.
  • The ttl (Time-To-Live) field determines how long the cache entries are valid, in milliseconds.
    • If no ttl is provided, the cache entries are kept indefinitely.
    • If an ttl is provided, expired cache entries are deleted when they are retrieved and in a daily cron job.
import { ActionCache } from "@convex-dev/action-cache";
import { components } from "./_generated/api";

const cache = new ActionCache(components.actionCache, {
  action: internal.example.myExpensiveAction,
  name: "myExpensiveActionV1",
  ttl: 1000 * 60 * 60 * 24 * 7, // 7 days
});

Example

Suppose you're building an app that uses vector search. Calculating embeddings is often expensive - in our case, we are using OpenAI's API which adds latency to every search and costs money to use. We can reduce the number of API calls by caching the results!

Start by defining the Convex action that calls the API to create embeddings. Feel free to substitute your favorite embeddings API. You may need to adjust the vector dimensions in the schema in example/schema.ts accordingly.

Set your API key environment variable

npx convex env set OPENAI_KEY <your-api-key>
export const embed = internalAction({
  args: { text: v.string() },
  handler: async (_ctx, { text }) => {
    const apiKey = process.env.OPENAI_KEY;
    if (!apiKey) {
      throw new Error("OPENAI_KEY environment variable not set!");
    }
    const req = { input: text, model: "text-embedding-ada-002" };
    const resp = await fetch("https://api.openai.com/v1/embeddings", {
      method: "POST",
      headers: {
        "Content-Type": "application/json",
        Authorization: `Bearer ${apiKey}`,
      },
      body: JSON.stringify(req),
    });
    if (!resp.ok) {
      const msg = await resp.text();
      throw new Error(`OpenAI API error: ${msg}`);
    }
    const json = await resp.json();
    const vector = json["data"][0]["embedding"];
    console.log(`Computed embedding of "${text}": ${vector.length} dimensions`);
    return vector as number[];
  },
});

Create the embeddings cache:

const embeddingsCache = new ActionCache(components.actionCache, {
  action: internal.example.embed,
  name: "embed-v1",
});

Use the cache when you run a vector search:

export const vectorSearch = action({
  args: { query: v.string(), cuisines: v.array(v.string()) },
  handler: async (ctx, args) => {
    const embedding = await embeddingsCache.fetch(ctx, {
      text: args.query,
    });
    const results = await ctx.vectorSearch("foods", "by_embedding", {
      vector: embedding,
      limit: 16,
      filter: (q) =>
        q.or(...args.cuisines.map((cuisine) => q.eq("cuisine", cuisine))),
    });
    const rows: SearchResult[] = await ctx.runQuery(
      internal.example.fetchResults,
      { results },
    );
    return rows;
  },
});

Defining multiple caches

You can use the same component for multiple actions, or multiple versions of the same action. You can specify a custom name argument to denote which cache you want to use, or change the name to start fresh, like embed-v2.

If the return value changes, it is important to change the name so you don't get unexpected values.

Clearing values

To clear old values, you can:

  1. Remove one entry by arguments.

    await embeddingsCache.remove(ctx, { text: "target text" });
  2. Remove all entries for the current name (defaults to function name). This is useful if you updated the implementation and want to clear

    await embeddingsCache.removeAllForName(ctx);
  3. Remove all entries in the component, including all names.

    await embeddingsCache.removeAll(ctx);

See more example usage in example.ts.

Dependents (0)

Package Sidebar

Install

npm i @convex-dev/action-cache

Weekly Downloads

296

Version

0.2.2

License

Apache-2.0

Unpacked Size

130 kB

Total Files

82

Last publish

Collaborators

  • cowling
  • jordanhunt
  • gautamg795
  • emmaling27
  • nipunn
  • sujayakar
  • ikhare
  • ldanilek
  • ballingt
  • sshader
  • aritrakh
  • ianatconvex
  • pashabitz