@kkitahara/complex-algebra

1.2.4 • Public • Published

JavaScript Style Guide license pipeline status coverage report version bundle size downloads per month downloads total

ComplexAlgebra

ECMAScript modules for exactly manipulating complex numbers of which real and imaginary parts are numbers of the form (p / q)sqrt(b), where p is an integer, q is a positive (non-zero) integer, and b is a positive, square-free integer.

Installation

npm install @kkitahara/complex-algebra @kkitahara/real-algebra

Examples

import { ExactRealAlgebra as RealAlgebra } from '@kkitahara/real-algebra'
import { ComplexAlgebra } from '@kkitahara/complex-algebra'
let ralg = new RealAlgebra()
let calg = new ComplexAlgebra(ralg)
let z, w, v

Generate a new real number

z = calg.num(1, 2, 5)
z.toString() // '(1 / 2)sqrt(5)'

z = calg.num(1, 2)
z.toString() // '1 / 2'

z = calg.num(3)
z.toString() // '3'

Generate a new imaginary number

z = calg.inum(1, 2, 5)
z.toString() // 'i((1 / 2)sqrt(5))'

z = calg.inum(1, 2)
z.toString() // 'i(1 / 2)'

z = calg.inum(3)
z.toString() // 'i(3)'

⚠️ num and inum methods do not check if (the absolute value of) the 3rd parameter is a square-free integer or not (must be square-free!).

Real and imaginary parts

z = calg.num(1, 2, 5)
z.re.toString() // '(1 / 2)sqrt(5)'
z.im.toString() // '0'

z = calg.inum(1, 2, 5)
z.re.toString() // '0'
z.im.toString() // '(1 / 2)sqrt(5)'

Generate from two real numbers (since v1.2.0)

let a = ralg.$(1, 2, 3)
let b = ralg.$(1, 2, 5)
z = calg.$(a, b)
z.toString() // '(1 / 2)sqrt(3) + i((1 / 2)sqrt(5))'

Copy (create a new object)

z = calg.inum(1, 2, 5)
w = calg.copy(z)
w.toString() // 'i((1 / 2)sqrt(5))'

Equality

z = calg.num(1, 2, 5)
w = calg.inum(1, 2, 5)
calg.eq(z, w) // false

w = calg.num(1, 2, 5)
calg.eq(z, w) // true

Inequality

z = calg.num(1, 2, 5)
w = calg.inum(1, 2, 5)
calg.ne(z, w) // true

w = calg.num(1, 2, 5)
calg.ne(z, w) // false

isZero

calg.isZero(calg.num(0)) // true
calg.isZero(calg.inum(0)) // true
calg.isZero(calg.num(1, 2, 5)) // false
calg.isZero(calg.inum(1, 2, 5)) // false
calg.isZero(calg.num(-1, 2, 5)) // false
calg.isZero(calg.inum(-1, 2, 5)) // false

isInteger (since v1.1.0)

calg.isInteger(calg.num(0)) // true
calg.isInteger(calg.inum(0)) // true
calg.isInteger(calg.num(1, 2)) // false
calg.isInteger(calg.inum(1, 2)) // false
calg.isInteger(calg.num(6, 3)) // true
calg.isInteger(calg.inum(6, 3)) // true
calg.isInteger(calg.num(6, 3, 2)) // false
calg.isInteger(calg.inum(6, 3, 2)) // false

Addition

z = calg.num(1, 2, 5)
w = calg.inum(1, 2)
// new object is generated
v = calg.add(z, w)
v.toString() // '(1 / 2)sqrt(5) + i(1 / 2)'

In-place addition

z = calg.num(1, 2, 5)
w = calg.inum(1, 2)
// new object is not generated
z = calg.iadd(z, w)
z.toString() // '(1 / 2)sqrt(5) + i(1 / 2)'

Subtraction

z = calg.num(1, 2, 5)
w = calg.inum(1, 2)
// new object is generated
v = calg.sub(z, w)
v.toString() // '(1 / 2)sqrt(5) + i(-1 / 2)'

In-place subtraction

z = calg.num(1, 2, 5)
w = calg.inum(1, 2)
// new object is not generated
z = calg.isub(z, w)
z.toString() // '(1 / 2)sqrt(5) + i(-1 / 2)'

Multiplication

z = calg.inum(1, 2, 5)
w = calg.inum(1, 2)
// new object is generated
v = calg.mul(z, w)
v.toString() // '-(1 / 4)sqrt(5)'

In-place multiplication

z = calg.inum(1, 2, 5)
w = calg.inum(1, 2)
// new object is not generated
z = calg.imul(z, w)
z.toString() // '-(1 / 4)sqrt(5)'

Division

z = calg.inum(1, 2, 5)
w = calg.inum(1, 2)
// new object is generated
v = calg.div(z, w)
v.toString() // 'sqrt(5)'

In-place division

z = calg.inum(1, 2, 5)
w = calg.inum(1, 2)
// new object is not generated
z = calg.idiv(z, w)
z.toString() // 'sqrt(5)'

Multiplication by -1

z = calg.inum(1, 2, 5)
// new object is generated
w = calg.neg(z)
w.toString() // 'i(-(1 / 2)sqrt(5))'

In-place multiplication by -1

z = calg.inum(1, 2, 5)
// new object is not generated
z = calg.ineg(z)
z.toString() // 'i(-(1 / 2)sqrt(5))'

Complex conjugate

z = calg.num(1, 2, 5)
w = calg.inum(1, 2, 5)
// new object is generated
v = calg.cjg(z)
v.toString() // '(1 / 2)sqrt(5)'
v = calg.cjg(w)
v.toString() // 'i(-(1 / 2)sqrt(5))'

In-place evaluation of the complex conjugate

z = calg.num(1, 2, 5)
w = calg.inum(1, 2, 5)
// new object is not generated
z = calg.icjg(z)
z.toString() // '(1 / 2)sqrt(5)'
w = calg.icjg(w)
w.toString() // 'i(-(1 / 2)sqrt(5))'

Square of the absolute value

z = calg.iadd(calg.num(3), calg.inum(4))
let a = calg.abs2(z)
a.toString() // '25'
// return value is not a complex number (but a real number)
a.re // undefined
a.im // undefined

JSON (stringify and parse)

z = calg.iadd(calg.num(1, 2, 5), calg.inum(-1, 2, 7))
let str = JSON.stringify(z)
w = JSON.parse(str, calg.reviver)
calg.eq(z, w) // true

Numerical algebra

The above codes work with built-in numbers if you use

import { RealAlgebra } from '@kkitahara/real-algebra'
import { ComplexAlgebra } from '@kkitahara/complex-algebra'
let ralg = new RealAlgebra()
let calg = new ComplexAlgebra(ralg)

instead of ExactRealAlgebra. See the documents of @kkitahara/real-algebra for more details.

ESDoc documents

For more examples, see ESDoc documents:

cd node_modules/@kkitahara/complex-algebra
npm install --only=dev
npm run doc

and open doc/index.html in your browser.

LICENSE

© 2019 Koichi Kitahara
Apache 2.0

Dependents (0)

Package Sidebar

Install

npm i @kkitahara/complex-algebra

Weekly Downloads

0

Version

1.2.4

License

Apache-2.0

Unpacked Size

67.3 kB

Total Files

10

Last publish

Collaborators

  • kkitahara