About stdlib...
We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.
The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.
When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.
To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!
cadd
Add two double-precision complex floating-point numbers.
Installation
npm install @stdlib/math-base-ops-cadd
Usage
var cadd = require( '@stdlib/math-base-ops-cadd' );
cadd( z1, z2 )
Adds two double-precision complex floating-point numbers.
var Complex128 = require( '@stdlib/complex-float64' );
var real = require( '@stdlib/complex-real' );
var imag = require( '@stdlib/complex-imag' );
var z = new Complex128( -1.5, 2.5 );
var v = cadd( z, z );
// returns <Complex128>
var re = real( v );
// returns -3.0
var im = imag( v );
// returns 5.0
Examples
var Complex128 = require( '@stdlib/complex-float64' );
var discreteUniform = require( '@stdlib/random-base-discrete-uniform' ).factory;
var cadd = require( '@stdlib/math-base-ops-cadd' );
var rand;
var z1;
var z2;
var z3;
var i;
rand = discreteUniform( -50, 50 );
for ( i = 0; i < 100; i++ ) {
z1 = new Complex128( rand(), rand() );
z2 = new Complex128( rand(), rand() );
z3 = cadd( z1, z2 );
console.log( '(%s) + (%s) = %s', z1.toString(), z2.toString(), z3.toString() );
}
C APIs
Usage
#include "stdlib/math/base/ops/cadd.h"
stdlib_base_cadd( z1, z2 )
Adds two double-precision complex floating-point numbers.
#include "stdlib/complex/float64.h"
#include "stdlib/complex/real.h"
#include "stdlib/complex/imag.h"
stdlib_complex128_t z = stdlib_complex128( 3.0, -2.0 );
stdlib_complex128_t out = stdlib_base_cadd( z, z );
double re = stdlib_real( out );
// returns 6.0
double im = stdlib_imag( out );
// returns -4.0
The function accepts the following arguments:
-
z1:
[in] stdlib_complex128_t
input value. -
z2:
[in] stdlib_complex128_t
input value.
stdlib_complex128_t stdlib_base_cadd( const stdlib_complex128_t z1, const stdlib_complex128_t z2 );
Examples
#include "stdlib/math/base/ops/cadd.h"
#include "stdlib/complex/float64.h"
#include "stdlib/complex/reim.h"
#include <stdio.h>
int main( void ) {
const stdlib_complex128_t x[] = {
stdlib_complex128( 3.14, 1.5 ),
stdlib_complex128( -3.14, 1.5 ),
stdlib_complex128( 0.0, -0.0 ),
stdlib_complex128( 0.0/0.0, 0.0/0.0 )
};
stdlib_complex128_t v;
stdlib_complex128_t y;
double re;
double im;
int i;
for ( i = 0; i < 4; i++ ) {
v = x[ i ];
stdlib_reim( v, &re, &im );
printf( "z = %lf + %lfi\n", re, im );
y = stdlib_base_cadd( v, v );
stdlib_reim( y, &re, &im );
printf( "cadd(z, z) = %lf + %lfi\n", re, im );
}
}
See Also
-
@stdlib/math-base/ops/cdiv
: divide two complex numbers. -
@stdlib/math-base/ops/cmul
: multiply two double-precision complex floating-point numbers. -
@stdlib/math-base/ops/csub
: subtract two double-precision complex floating-point numbers.
Notice
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
Community
License
See LICENSE.
Copyright
Copyright © 2016-2024. The Stdlib Authors.