About stdlib...
We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.
The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.
When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.
To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!
Compute the relative difference of two real numbers in units of double-precision floating-point epsilon.
npm install @stdlib/math-base-utils-float64-epsilon-difference
var epsdiff = require( '@stdlib/math-base-utils-float64-epsilon-difference' );
Computes the relative difference of two real numbers in units of double-precision floating-point epsilon.
var d = epsdiff( 12.15, 12.149999999999999 ); // => ~0.658ε
// returns ~0.658
The following scale
functions are supported:
-
max-abs: maximum absolute value of
x
andy
(default). -
max: maximum value of
x
andy
. -
min-abs: minimum absolute value of
x
andy
. -
min: minimum value of
x
andy
. -
mean-abs: arithmetic mean of the absolute values of
x
andy
. -
mean: arithmetic mean of
x
andy
. -
x:
x
(noncommutative). -
y:
y
(noncommutative).
By default, the function scales the absolute difference by dividing the absolute difference by the maximum absolute value of x
and y
. To scale by a different function, specify a scale function name.
var d = epsdiff( 2.4341309458983933, 2.4341309458633909, 'mean-abs' ); // => ~64761.5ε => ~1.438e-11
// returns ~64761.5
To use a custom scale function, provide a function
which accepts two numeric arguments x
and y
.
function scale( x, y ) {
// Return the minimum value:
return ( x > y ) ? y : x;
}
var d = epsdiff( 1.0000000000000002, 1.0000000000000100, scale ); // => ~44ε
// returns ~44
-
If computing the relative difference in units of epsilon will result in overflow, the function returns the maximum double-precision floating-point number.
var d = epsdiff( 1.0e304, 1.0, 'min' ); // => ~1.798e308ε => 1.0e304/ε overflows // returns ~1.798e308
-
If the absolute difference of
x
andy
is0
, the relative difference is always0
.var d = epsdiff( 0.0, 0.0 ); // returns 0.0 d = epsdiff( 3.14, 3.14 ); // returns 0.0
-
If
x = y = +infinity
orx = y = -infinity
, the function returnsNaN
.var PINF = require( '@stdlib/constants-float64-pinf' ); var NINF = require( '@stdlib/constants-float64-ninf' ); var d = epsdiff( PINF, PINF ); // returns NaN d = epsdiff( NINF, NINF ); // returns NaN
-
If
x = -y = +infinity
or-x = y = +infinity
, the relative difference is+infinity
.var PINF = require( '@stdlib/constants-float64-pinf' ); var NINF = require( '@stdlib/constants-float64-ninf' ); var d = epsdiff( PINF, NINF ); // returns Infinity d = epsdiff( NINF, PINF ); // returns Infinity
-
If a
scale
function returns0
, the function returnsNaN
.var d = epsdiff( -1.0, 1.0, 'mean' ); // => |2/0| // returns NaN
var randu = require( '@stdlib/random-base-randu' );
var EPS = require( '@stdlib/constants-float64-eps' );
var epsdiff = require( '@stdlib/math-base-utils-float64-epsilon-difference' );
var sign;
var x;
var y;
var d;
var i;
for ( i = 0; i < 100; i++ ) {
x = randu();
sign = ( randu() > 0.5 ) ? 1.0 : -1.0;
y = x + ( sign*EPS*i );
d = epsdiff( x, y );
console.log( 'x = %d. y = %d. d = %dε.', x, y, d );
}
-
@stdlib/math-base/utils/absolute-difference
: compute the absolute difference of two real numbers. -
@stdlib/math-base/utils/relative-difference
: compute the relative difference of two real numbers.
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
See LICENSE.
Copyright © 2016-2024. The Stdlib Authors.