[!NOTE]
This project is in GA Stage.The Upstash Professional Support fully covers this project. It receives regular updates, and bug fixes. The Upstash team is committed to maintaining and improving its functionality.
@upstash/vector
is an HTTP/REST based client for Typescript, built on top of Upstash REST API.
It is the only connectionless (HTTP based) Vector client and designed for:
- Serverless functions (AWS Lambda ...)
- Cloudflare Workers
- Next.js, Jamstack ...
- Client side web/mobile applications
- WebAssembly
- and other environments where HTTP is preferred over TCP.
See the list of APIs supported.
npm install @upstash/vector
Create a new index on Upstash
import { Index } from "@upstash/vector";
type Metadata = {
title: string,
genre: 'sci-fi' | 'fantasy' | 'horror' | 'action'
category: "classic" | "modern"
}
const index = new Index<Metadata>({
url: "<UPSTASH_VECTOR_REST_URL>",
token: "<UPSTASH_VECTOR_REST_TOKEN>",
});
// Upsert to dense index
await index.upsert([{
id: 'upstash-rocks',
vector: [
0.13, 0.87, ... // dense embedding
],
metadata: {
title: 'Lord of The Rings',
genre: 'fantasy',
category: 'classic'
}
}])
// Upsert to sparse index
await index.upsert([{
id: 'upstash-rocks',
sparseVector: { // sparse embedding
indices: [2, 3],
values: [0.13, 0.87],
},
metadata: {
title: 'Lord of The Rings',
genre: 'fantasy',
category: 'classic'
}
}])
// Upsert to hybrid index
await index.upsert([{
id: 'upstash-rocks',
vector: [
0.13, 0.87, ... // dense embedding
],
sparseVector: { // sparse embedding
indices: [2, 3],
values: [0.13, 0.87],
},
metadata: {
title: 'Lord of The Rings',
genre: 'fantasy',
category: 'classic'
}
}])
// Upsert data as plain text.
await index.upsert([{
id: 'tokyo',
data: "Tokyo is the capital of Japan.",
}])
// Upsert data alongside with your embedding
await index.upsert([{
id: 'tokyo',
data: "Tokyo is the capital of Japan.",
vector: [......]
}])
// Query data
const results = await index.query<Metadata>(
{
vector: [
... // query embedding
],
includeVectors: true,
includeMetadata: true,
topK: 1,
filter: "genre = 'fantasy' and title = 'Lord of the Rings'"
},
{
namespace: "example-namespace"
}
)
// Query with your data
const results = await index.query(
{
data: "Where is the capital of Japan",
topK: 1,
},
)
// Query with your data
const results = await index.query(
{
vector: [
... // query embedding
],
includeData: true, // Returns data associated with your vector.
topK: 1,
},
)
// If you wanna learn more about filtering check: [Metadata Filtering](https://upstash.com/docs/vector/features/filtering)
// Update data
await index.upsert(
{
id: "upstash-rocks",
metadata: {
title: 'Star Wars',
genre: 'sci-fi',
category: 'classic'
}
},
{
namespace: "namespace"
}
);
// Delete record
await index.delete("upstash-rocks", {namespace: "example-namespace"});
// Delete many by id
await index.delete(["id-1", "id-2", "id-3"]);
// Fetch records by their IDs
await index.fetch(["id-1", "id-2"], {namespace: "example-namespace"});
// Fetch records by their IDs
await index.fetch(["id-1", "id-2"], {namespace: "example-namespace", includeData:true});
// Fetch records with range
await index.range(
{
cursor: 0,
limit: 5,
includeVectors: true,
},
{
namespace: "example-namespace"
}
);
// Reset index
await index.reset();
// Info about index
await index.info();
// Random vector based on stored vectors
await index.random({namespace: "example-namespace"});
// List existing namesapces
await index.listNamespaces();
// Delete a namespace
await index.deleteNamespace("namespace-to-be-deleted");
Upstash Vector allows you to partition a single index into multiple isolated namespaces. Each namespace functions as a self-contained subset of the index, in which read and write requests are only limited to one namespace. To learn more about it, see Namespaces
import { Index } from "@upstash/vector";
type Metadata = {
title: string;
genre: "sci-fi" | "fantasy" | "horror" | "action";
category: "classic" | "modern";
};
const index = new Index<Metadata>({
url: "<UPSTASH_VECTOR_REST_URL>",
token: "<UPSTASH_VECTOR_REST_TOKEN>",
});
const namespace = index.namespace("example-namespace");
// Upsert Data
await namespace.upsert([{
id: 'upstash-rocks',
vector: [
.... // embedding values
],
metadata: {
title: 'Lord of The Rings',
genre: 'fantasy',
category: 'classic'
}
}])
// Query Vector
const results = await namespace.query<Metadata>(
{
vector: [
... // query embedding
],
includeVectors: true,
includeMetadata: true,
topK: 1,
filter: "genre = 'fantasy' and title = 'Lord of the Rings'"
},
)
// Delete Record
await namespace.delete("upstash-rocks");
// Fetch records by their IDs
await namespace.fetch(["id-1", "id-2"]);
If you wanna learn more about filtering check: Metadata Filtering
We have a Discord for common problems. If you can't find a solution, please open an issue.
See the documentation for details.
Create a new index on Upstash and copy the url and token.
bun run test
bun run build
Make sure you have Bun.js installed and have those relevant keys with specific vector dimensions:
## Vector dimension should be 3842
UPSTASH_VECTOR_REST_URL="XXXXX"
UPSTASH_VECTOR_REST_TOKEN="XXXXX"