This is a standalone Heap data structure from the data-structure-typed collection. If you wish to access more data
structures or advanced features, you can transition to directly installing the
complete data-structure-typed package
Use Heap to sort an array
function heapSort(arr: number[]): number[] {
const heap = new Heap<number>(arr, { comparator: (a, b) => a - b });
const sorted: number[] = [];
while (!heap.isEmpty()) {
sorted.push(heap.poll()!); // Poll minimum element
}
return sorted;
}
const array = [5, 3, 8, 4, 1, 2];
console.log(heapSort(array)); // [1, 2, 3, 4, 5, 8]
Use Heap to solve top k problems
function topKElements(arr: number[], k: number): number[] {
const heap = new Heap<number>([], { comparator: (a, b) => b - a }); // Max heap
arr.forEach(num => {
heap.add(num);
if (heap.size > k) heap.poll(); // Keep the heap size at K
});
return heap.toArray();
}
const numbers = [10, 30, 20, 5, 15, 25];
console.log(topKElements(numbers, 3)); // [15, 10, 5]
Use Heap to merge sorted sequences
function mergeSortedSequences(sequences: number[][]): number[] {
const heap = new Heap<{ value: number; seqIndex: number; itemIndex: number }>([], {
comparator: (a, b) => a.value - b.value // Min heap
});
// Initialize heap
sequences.forEach((seq, seqIndex) => {
if (seq.length) {
heap.add({ value: seq[0], seqIndex, itemIndex: 0 });
}
});
const merged: number[] = [];
while (!heap.isEmpty()) {
const { value, seqIndex, itemIndex } = heap.poll()!;
merged.push(value);
if (itemIndex + 1 < sequences[seqIndex].length) {
heap.add({
value: sequences[seqIndex][itemIndex + 1],
seqIndex,
itemIndex: itemIndex + 1
});
}
}
return merged;
}
const sequences = [
[1, 4, 7],
[2, 5, 8],
[3, 6, 9]
];
console.log(mergeSortedSequences(sequences)); // [1, 2, 3, 4, 5, 6, 7, 8, 9]
Use Heap to dynamically maintain the median
class MedianFinder {
private low: MaxHeap<number>; // Max heap, stores the smaller half
private high: MinHeap<number>; // Min heap, stores the larger half
constructor() {
this.low = new MaxHeap<number>([]);
this.high = new MinHeap<number>([]);
}
addNum(num: number): void {
if (this.low.isEmpty() || num <= this.low.peek()!) this.low.add(num);
else this.high.add(num);
// Balance heaps
if (this.low.size > this.high.size + 1) this.high.add(this.low.poll()!);
else if (this.high.size > this.low.size) this.low.add(this.high.poll()!);
}
findMedian(): number {
if (this.low.size === this.high.size) return (this.low.peek()! + this.high.peek()!) / 2;
return this.low.peek()!;
}
}
const medianFinder = new MedianFinder();
medianFinder.addNum(10);
console.log(medianFinder.findMedian()); // 10
medianFinder.addNum(20);
console.log(medianFinder.findMedian()); // 15
medianFinder.addNum(30);
console.log(medianFinder.findMedian()); // 20
medianFinder.addNum(40);
console.log(medianFinder.findMedian()); // 25
medianFinder.addNum(50);
console.log(medianFinder.findMedian()); // 30
Use Heap for load balancing
function loadBalance(requests: number[], servers: number): number[] {
const serverHeap = new Heap<{ id: number; load: number }>([], { comparator: (a, b) => a.load - b.load }); // min heap
const serverLoads = new Array(servers).fill(0);
for (let i = 0; i < servers; i++) {
serverHeap.add({ id: i, load: 0 });
}
requests.forEach(req => {
const server = serverHeap.poll()!;
serverLoads[server.id] += req;
server.load += req;
serverHeap.add(server); // The server after updating the load is re-entered into the heap
});
return serverLoads;
}
const requests = [5, 2, 8, 3, 7];
console.log(loadBalance(requests, 3)); // [12, 8, 5]
Use Heap to schedule tasks
type Task = [string, number];
function scheduleTasks(tasks: Task[], machines: number): Map<number, Task[]> {
const machineHeap = new Heap<{ id: number; load: number }>([], { comparator: (a, b) => a.load - b.load }); // Min heap
const allocation = new Map<number, Task[]>();
// Initialize the load on each machine
for (let i = 0; i < machines; i++) {
machineHeap.add({ id: i, load: 0 });
allocation.set(i, []);
}
// Assign tasks
tasks.forEach(([task, load]) => {
const machine = machineHeap.poll()!;
allocation.get(machine.id)!.push([task, load]);
machine.load += load;
machineHeap.add(machine); // The machine after updating the load is re-entered into the heap
});
return allocation;
}
const tasks: Task[] = [
['Task1', 3],
['Task2', 1],
['Task3', 2],
['Task4', 5],
['Task5', 4]
];
const expectedMap = new Map<number, Task[]>();
expectedMap.set(0, [
['Task1', 3],
['Task4', 5]
]);
expectedMap.set(1, [
['Task2', 1],
['Task3', 2],
['Task5', 4]
]);
console.log(scheduleTasks(tasks, 2)); // expectedMap
API Docs
Live Examples
Examples Repository
Data Structure |
Unit Test |
Performance Test |
API Docs |
Heap |
|
|
Heap |
Standard library data structure comparison
Data Structure Typed |
C++ STL |
java.util |
Python collections |
Heap<E> |
priority_queue<T> |
PriorityQueue<E> |
heapq |
heap
test name |
time taken (ms) |
executions per sec |
sample deviation |
10,000 add & pop |
5.80 |
172.35 |
8.78e-5 |
10,000 fib add & pop |
357.92 |
2.79 |
0.00 |
Built-in classic algorithms
Algorithm |
Function Description |
Iteration Type |
Software Engineering Design Standards
Principle |
Description |
Practicality |
Follows ES6 and ESNext standards, offering unified and considerate optional parameters, and simplifies method names. |
Extensibility |
Adheres to OOP (Object-Oriented Programming) principles, allowing inheritance for all data structures. |
Modularization |
Includes data structure modularization and independent NPM packages. |
Efficiency |
All methods provide time and space complexity, comparable to native JS performance. |
Maintainability |
Follows open-source community development standards, complete documentation, continuous integration, and adheres to TDD (Test-Driven Development) patterns. |
Testability |
Automated and customized unit testing, performance testing, and integration testing. |
Portability |
Plans for porting to Java, Python, and C++, currently achieved to 80%. |
Reusability |
Fully decoupled, minimized side effects, and adheres to OOP. |
Security |
Carefully designed security for member variables and methods. Read-write separation. Data structure software does not need to consider other security aspects. |
Scalability |
Data structure software does not involve load issues. |