npjs-basic

1.0.6 • Public • Published

npjs-basic

npm first-timers-only

A numpy-like package for mathematical array functions and manipulations

Introduction

npjs is a lightweight JavaScript library providing a subset of Python's numpy package. This package is written in pure Javascript and requires no dependencies. This package also includes some extra functions ("min_max_normalize" as of now).

Usage

const np = require('npjs-basic');
 
let arr = [[1, 2, 3], [4, 5, 6]];
 
np.shape(arr, (err, res) => {
    if (err) return console.error(err);
    console.log(res);
    // res = [2, 3]
});
 
let flatArr = np.flatten(arr);
// flatArr = [1, 2, 3, 4, 5, 6]

Functions

  • add(listA, listB, callback) - returns array of sums of corresponding elements of listA and listB of any dimensions.

  • arange(start, stop, step) - returns evenly spaced values within the half-open interval [start, stop) with optional step argument.

  • dot(listA, listB, callbacks) - returns dot product of listA and listB.

  • flatten(list) - returns 1-D representation of any shape and any levels of nesting of list array.

  • full(shape_array, val) - returns array of shape as specified in shape_array with values = val.

  • linspace(start, end, num) - returns array of numbers in range [start, end] with length = num. Default num=50 unless specified.

  • mean(list) - returns mean of list elements.

  • min_max_normalize(list, callback) - returns array after applying Min-Max Normalization on list elements.

  • norm(list) - returns norm as in linear algebra for list elements.

  • shape(list, callback) - returns dimensions of input array if the array is uniform or error otherwise.

  • subtract(listA, listB, callback) - returns array of differences of corresponding elements of listA and listB of any dimensions.

Contribution

Happy to recieve or provide contributions related to this package. Feel free to raise an issue if you find one. Github Link

Readme

Keywords

Package Sidebar

Install

npm i npjs-basic

Weekly Downloads

0

Version

1.0.6

License

MIT

Unpacked Size

9.71 kB

Total Files

5

Last publish

Collaborators

  • hrishibawane