This is a standalone Red Black Tree data structure from the data-structure-typed collection. If you wish to access more data
structures or advanced features, you can transition to directly installing the
complete data-structure-typed package
npm i red-black-tree-typed --save
yarn add red-black-tree-typed
import {RedBlackTree} from 'data-structure-typed';
// /* or if you prefer */ import {RedBlackTree} from 'red-black-tree-typed';
const rbTree = new RedBlackTree<number>();
const idsOrVals = [11, 3, 15, 1, 8, 13, 16, 2, 6, 9, 12, 14, 4, 7, 10, 5];
rbTree.addMany(idsOrVals);
const node6 = rbTree.getNode(6);
node6 && rbTree.getHeight(node6) // 3
node6 && rbTree.getDepth(node6) // 1
const getNodeById = rbTree.getNodeByKey(10);
getNodeById?.id // 10
const getMinNodeByRoot = rbTree.getLeftMost();
getMinNodeByRoot?.id // 1
const node15 = rbTree.getNodeByKey(15);
const getMinNodeBySpecificNode = node15 && rbTree.getLeftMost(node15);
getMinNodeBySpecificNode?.id // 12
const lesserSum = rbTree.lesserSum(10);
lesserSum // 45
const node11 = rbTree.getNodeByKey(11);
node11?.id // 11
const dfs = rbTree.dfs('in');
dfs[0].id // 1
rbTree.perfectlyBalance();
const bfs = rbTree.bfs('node');
rbTree.isPerfectlyBalanced() && bfs[0].id // 8
rbTree.delete(11, true)[0].deleted?.id // 11
rbTree.isAVLBalanced(); // true
node15 && rbTree.getHeight(node15) // 2
rbTree.delete(1, true)[0].deleted?.id // 1
rbTree.isAVLBalanced(); // true
rbTree.getHeight() // 4
rbTree.delete(4, true)[0].deleted?.id // 4
rbTree.isAVLBalanced(); // true
rbTree.getHeight() // 4
rbTree.delete(10, true)[0].deleted?.id // 10
rbTree.isAVLBalanced(); // true
rbTree.getHeight() // 3
rbTree.delete(15, true)[0].deleted?.id // 15
rbTree.isAVLBalanced(); // true
rbTree.getHeight() // 3
rbTree.delete(5, true)[0].deleted?.id // 5
rbTree.isAVLBalanced(); // true
rbTree.getHeight() // 3
rbTree.delete(13, true)[0].deleted?.id // 13
rbTree.isAVLBalanced(); // true
rbTree.getHeight() // 3
rbTree.delete(3, true)[0].deleted?.id // 3
rbTree.isAVLBalanced(); // true
rbTree.getHeight() // 3
rbTree.delete(8, true)[0].deleted?.id // 8
rbTree.isAVLBalanced(); // true
rbTree.getHeight() // 3
rbTree.delete(6, true)[0].deleted?.id // 6
rbTree.delete(6, true).length // 0
rbTree.isAVLBalanced(); // true
rbTree.getHeight() // 2
rbTree.delete(7, true)[0].deleted?.id // 7
rbTree.isAVLBalanced(); // true
rbTree.getHeight() // 2
rbTree.delete(9, true)[0].deleted?.id // 9
rbTree.isAVLBalanced(); // true
rbTree.getHeight() // 2
rbTree.delete(14, true)[0].deleted?.id // 14
rbTree.isAVLBalanced(); // true
rbTree.getHeight() // 1
rbTree.isAVLBalanced(); // true
const lastBFSIds = rbTree.BFS();
lastBFSIds[0] // 12
const lastBFSNodes = rbTree.BFS('node');
lastBFSNodes[0].id // 12
const {RedBlackTree} = require('data-structure-typed');
// /* or if you prefer */ const {RedBlackTree} = require('red-black-tree-typed');
const rbTree = new RedBlackTree();
const idsOrVals = [11, 3, 15, 1, 8, 13, 16, 2, 6, 9, 12, 14, 4, 7, 10, 5];
rbTree.addMany(idsOrVals, idsOrVals);
const node6 = rbTree.getNodeByKey(6);
node6 && rbTree.getHeight(node6) // 3
node6 && rbTree.getDepth(node6) // 1
const getNodeById = rbTree.get(10, 'id');
getNodeById?.id // 10
const getMinNodeByRoot = rbTree.getLeftMost();
getMinNodeByRoot?.id // 1
const node15 = rbTree.getNodeByKey(15);
const getMinNodeBySpecificNode = node15 && rbTree.getLeftMost(node15);
getMinNodeBySpecificNode?.id // 12
const node11 = rbTree.getNodeByKey(11);
node11?.id // 11
const dfs = rbTree.dfs('in');
dfs[0].id // 1
rbTree.perfectlyBalance();
const bfs = rbTree.bfs('node');
rbTree.isPerfectlyBalanced() && bfs[0].id // 8
rbTree.delete(11, true)[0].deleted?.id // 11
rbTree.isAVLBalanced(); // true
node15 && rbTree.getHeight(node15) // 2
rbTree.delete(1, true)[0].deleted?.id // 1
rbTree.isAVLBalanced(); // true
rbTree.getHeight() // 4
rbTree.delete(4, true)[0].deleted?.id // 4
rbTree.isAVLBalanced(); // true
rbTree.getHeight() // 4
rbTree.delete(10, true)[0].deleted?.id // 10
rbTree.isAVLBalanced(); // true
rbTree.getHeight() // 3
rbTree.delete(15, true)[0].deleted?.id // 15
rbTree.isAVLBalanced(); // true
rbTree.getHeight() // 3
rbTree.delete(5, true)[0].deleted?.id // 5
rbTree.isAVLBalanced(); // true
rbTree.getHeight() // 3
rbTree.delete(13, true)[0].deleted?.id // 13
rbTree.isAVLBalanced(); // true
rbTree.getHeight() // 3
rbTree.delete(3, true)[0].deleted?.id // 3
rbTree.isAVLBalanced(); // true
rbTree.getHeight() // 3
rbTree.delete(8, true)[0].deleted?.id // 8
rbTree.isAVLBalanced(); // true
rbTree.getHeight() // 3
rbTree.delete(6, true)[0].deleted?.id // 6
rbTree.delete(6, true).length // 0
rbTree.isAVLBalanced(); // true
rbTree.getHeight() // 2
rbTree.delete(7, true)[0].deleted?.id // 7
rbTree.isAVLBalanced(); // true
rbTree.getHeight() // 2
rbTree.delete(9, true)[0].deleted?.id // 9
rbTree.isAVLBalanced(); // true
rbTree.getHeight() // 2
rbTree.delete(14, true)[0].deleted?.id // 14
rbTree.isAVLBalanced(); // true
rbTree.getHeight() // 1
rbTree.isAVLBalanced(); // true
const lastBFSIds = rbTree.bfs();
lastBFSIds[0] // 12
const lastBFSNodes = rbTree.bfs('node');
lastBFSNodes[0].id // 12
using Red-Black Tree as a price-based index for stock data
// Define the structure of individual stock records
interface StockRecord {
price: number; // Stock price (key for indexing)
symbol: string; // Stock ticker symbol
volume: number; // Trade volume
}
// Simulate stock market data as it might come from an external feed
const marketStockData: StockRecord[] = [
{ price: 142.5, symbol: 'AAPL', volume: 1000000 },
{ price: 335.2, symbol: 'MSFT', volume: 800000 },
{ price: 3285.04, symbol: 'AMZN', volume: 500000 },
{ price: 267.98, symbol: 'META', volume: 750000 },
{ price: 234.57, symbol: 'GOOGL', volume: 900000 }
];
// Extend the stock record type to include metadata for database usage
type StockTableRecord = StockRecord & { lastUpdated: Date };
// Create a Red-Black Tree to index stock records by price
// Simulates a database index with stock price as the key for quick lookups
const priceIndex = new RedBlackTree<number, StockTableRecord, StockRecord>(marketStockData, {
toEntryFn: stockRecord => [
stockRecord.price, // Use stock price as the key
{
...stockRecord,
lastUpdated: new Date() // Add a timestamp for when the record was indexed
}
]
});
// Query the stock with the highest price
const highestPricedStock = priceIndex.getRightMost();
console.log(priceIndex.get(highestPricedStock)?.symbol); // 'AMZN' // Amazon has the highest price
// Query stocks within a specific price range (200 to 400)
const stocksInRange = priceIndex.rangeSearch(
[200, 400], // Price range
node => priceIndex.get(node)?.symbol // Extract stock symbols for the result
);
console.log(stocksInRange); // ['GOOGL', 'META', 'MSFT']
API Docs
Live Examples
Examples Repository
Data Structure |
Unit Test |
Performance Test |
API Docs |
Red Black Tree |
|
|
RedBlackTree |
Standard library data structure comparison
Data Structure Typed |
C++ STL |
java.util |
Python collections |
RedBlackTree<K, V> |
map<K, V> |
TreeMap<K, V> |
- |
rb-tree
test name |
time taken (ms) |
executions per sec |
sample deviation |
100,000 add |
85.85 |
11.65 |
0.00 |
100,000 add & delete randomly |
211.54 |
4.73 |
0.00 |
100,000 getNode |
37.92 |
26.37 |
1.65e-4 |
Built-in classic algorithms
Algorithm |
Function Description |
Iteration Type |
Binary Tree DFS |
Traverse a binary tree in a depth-first manner, starting from the root node, first visiting the left subtree,
and then the right subtree, using recursion.
|
Recursion + Iteration |
Binary Tree BFS |
Traverse a binary tree in a breadth-first manner, starting from the root node, visiting nodes level by level
from left to right.
|
Iteration |
Binary Tree Morris |
Morris traversal is an in-order traversal algorithm for binary trees with O(1) space complexity. It allows tree
traversal without additional stack or recursion.
|
Iteration |
Software Engineering Design Standards
Principle |
Description |
Practicality |
Follows ES6 and ESNext standards, offering unified and considerate optional parameters, and simplifies method names. |
Extensibility |
Adheres to OOP (Object-Oriented Programming) principles, allowing inheritance for all data structures. |
Modularization |
Includes data structure modularization and independent NPM packages. |
Efficiency |
All methods provide time and space complexity, comparable to native JS performance. |
Maintainability |
Follows open-source community development standards, complete documentation, continuous integration, and adheres to TDD (Test-Driven Development) patterns. |
Testability |
Automated and customized unit testing, performance testing, and integration testing. |
Portability |
Plans for porting to Java, Python, and C++, currently achieved to 80%. |
Reusability |
Fully decoupled, minimized side effects, and adheres to OOP. |
Security |
Carefully designed security for member variables and methods. Read-write separation. Data structure software does not need to consider other security aspects. |
Scalability |
Data structure software does not involve load issues. |