semantic_infer
npm module for inferring the semantic types of tabular data fields. Includes support for inferring Frictionless data packages json and incorporating semantic inference into the data package json.
https://github.com/bcgov/repomountie/blob/master/doc/lifecycle-badges.md
There are 3 ways to use this package: semantic_infer (if you don't need data packages), datapackage_infer (for browser client based data package and semantic inference), and datapackage_infer_filesytem (for file system based data package and semantic inference).
Starting with version 1.2.0 You can use a config file to override default values.
semantic_infer only
semantic_infer takes a column name, an array of values and data type as input and returns an object if a match is found else returns 'None'
Example usage:
const semanticinfer = require('semantic_infer');
var val_arr = ['V8r 1g7', 'V8X 5m2'];
result2 = semanticinfer.semantic_infer.semantically_classify_field('Post_CD',val_arr,'string',true);
console.log(result2);
Result:
{
name: 'Postal code',
rdfType: 'https://schema.org/postalCode',
var_class: 'indirect_identifier'
}
datapackage_infer
Takes a data package with sample data in it and infers the fields, field data types (e.g., integer, string), and semantic types (e.g., postal code).
DataPackage rules:
- Datapackage object must have a "resources" array.
- Each resource must have a "name" field.
- Each resource must have a "data" or "path" field (but not both).
Semantic inference rules:
- Only resources with a "data" field will be sematically inferred.
- Providing a "SAVED_PATH_ATTR" attribute for data resources will result in the "data" field being replaced by a "path" field.
Example usage:
const semanticinfer = require('semantic_infer');
const descriptor = {
resources: [
{
name: 'example',
saved_path: 'example.csv',
data: [
['height', 'age', 'name'],
['180', '18', 'V8R1G6'],
['192', '32', 'B4D 4G1'],
]
}
]
}
const results = semanticinfer.datapackage_infer.infer_datapackage(descriptor,true);
results.then(function(result) {
JSON.stringify(result);
});
Result:
{
"resources": [
{
"name": "example",
"profile": "tabular-data-resource",
"encoding": "utf-8",
"schema": { "fields": [
{ "name": "height", "type": "integer", "format": "default" },
{ "name": "age", "type": "integer", "format": "default" },
{
"name": "name",
"type": "string",
"format": "default",
"var_class": "indirect_identifier",
"rdfType": "https://schema.org/postalCode"
}
],
"missingValues": [ "" ]
},
"path": "example.csv"
}
],
"profile": "data-package"
}
datapackage_infer_filesystem
Infers data package (including semantic inference) json for all csv and txt files in the current directory and its sub-directories.
Example usage:
const semanticinfer = require('./datapackage_infer_filesystem');
semanticinfer.datapackage_infer_filesystem.infer_datapackage_filesystem();
You may optional pass in an object to add to the data package as top level attributes of the data package.
const source = {"sources": [{
"title": "my source location",
"path": "path/to/my/datafile"
}]}
semanticinfer.datapackage_infer_filesystem.infer_datapackage_filesystem(source);
Result:
{
"resources": [ ... ],
"profile": "data-package",
"sources": [{
"title": "my source location",
"path": "path/to/my/datafile"
}
]
}
How to override default settings
Overriding the default settings are supported by the config npm module. Create a "config" directory in your project folder and within that folder a "default.json" file with the settings you wish to override.
See semantic_settings.js and datapackage_settings.js files for all the settings that can be overriden. Make sure you have a corresponding pattern for each label if you override semantic settings.
Example contents of default.json:
{
"STRING_HEADER_SEMANTIC_LABELS":[
{"name":"Phone number","rdfType":"https://schema.org/telephone","var_class":"direct_identifier"},
{"name":"First name","rdfType":"https://schema.org/givenName","var_class":"direct_identifier"},
{"name":"Last name","rdfType":"https://schema.org/familyName","var_class":"direct_identifier"},
{"name":"Middle name","rdfType":"https://schema.org/additionalName","var_class":"direct_identifier"},
{"name":"Full name","var_class":"direct_identifier"},
{"name":"Email","rdfType":"https://schema.org/email","var_class":"direct_identifier"},
{"name":"Postal code","rdfType":"https://schema.org/postalCode","var_class":"indirect_identifier"},
{"name":"Street address","rdfType":"https://schema.org/streetAddress","var_class":"direct_identifier"},
{"name":"Gender","rdfType":"https://schema.org/gender","var_class":"research_content"}
],
"STRING_HEADER_PATTERNS":[
"/.*PHONE.*|.*PH.?NUM.*/",
"/.*FI?R?ST.?NAME|.*NAME.*FI?R?ST.*|F.?NAME|.*GI?VE?N.?NAME|.*NAME.*GI?VE?N.*/i",
"/.*LA?ST.?NA?ME.*|.*NA?ME.?LA?ST.*|.*SU?RNA?ME.*|.*FAMILY.?NAME.*|.*NAME.*FAMILY.*/i",
"/.*MID(DLE)?.?NAME.*|.*NAME.?MID(DLE)?.*|PREF(FERRED)?.?NAME/i",
"/.*FULL.?NA?ME.*|.*NA?ME.*FULL.*/i",
"/.*EMAIL.*/i",
"/.*PO?STA?L.?CO?DE?.*|.*POST_CD.*/i",
"/.*ADDR.*|.*STREET.*/i",
"/.*SEX.*|.*GE?NDE?R.*/i"
]
}
Optional calcuation of number of records in tabular resources
You can optionally calculate the number of records in a CSV by setting DATA_PACKAGE_FILE_RECORD_NUM_RECORDS=1 in your config file. Works only for linux environments.