distributions-uniform-quantile

0.0.1 • Public • Published

Quantile Function

NPM version Build Status Coverage Status Dependencies

Continuous uniform distribution quantile function.

The quantile function for a continuous uniform random variable is

Quantile function for a Uniform distribution.

for 0 <= p <= 1, where a is the minimum support and b is the maximum support.

Installation

$ npm install distributions-uniform-quantile

For use in the browser, use browserify.

Usage

var quantile = require( 'distributions-uniform-quantile' );

quantile( p[, options] )

Evaluates the quantile function for the continuous uniform distribution. p may be either a number between 0 and 1, an array, a typed array, or a matrix.

var matrix = require( 'dstructs-matrix' ),
    mat,
    out,
    x,
    i;
 
/*
For standard uniform random variables,
the quantile function is equal to the identity function:
*/
 
out = quantile( 0.25 );
// returns 0.25
 
= [ 0, 0.2, 0.4, 0.6, 0.8, 1 ];
out = quantile( x );
// returns [ 0, 0.2, 0.4, 0.6, 0.8, 1 ]
 
= new Float32Array( x );
out = quantile( x );
// returns Float64Array( [0,0.2,0.4,0.6,0.8,1] )
 
= new Float32Array( 6 );
for ( i = 0; i < 6; i++ ) {
    x[ i ] = i / 6;
}
mat = matrix( x, [3,2], 'float32' );
/*
    [   0   1/6
       2/6  3/6
       4/5  5/6 ]
*/
 
out = quantile( mat );
/*
    [   0   1/6
       2/6  3/6
       4/5  5/6 ]
*/

The function accepts the following options:

  • a: minimum support. Default: 0.
  • b: maximum support. Default: 1.
  • accessor: accessor function for accessing array values.
  • dtype: output typed array or matrix data type. Default: float64.
  • copy: boolean indicating if the function should return a new data structure. Default: true.
  • path: deepget/deepset key path.
  • sep: deepget/deepset key path separator. Default: '.'.

A continuous uniform distribution is a function of two parameters: a(minimum support) and b(maximum support). By default, a is equal to 0 and b is equal to 1. To adjust either parameter, set the corresponding option.

var x = [ 0, 0.2, 0.4, 0.6, 0.8, 1 ];
 
var out = quantile( x, {
    'a': -10,
    'b': 10,
});
// returns [ -10, -6, -2, 0, 2, 6, 10 ]

For non-numeric arrays, provide an accessor function for accessing array values.

var data = [
    [0,0],
    [1,0.2],
    [2,0.4],
    [3,0.6],
    [4,0.8],
    [5,1]
];
 
function getValue( d, i ) {
    return d[ 1 ];
}
 
var out = quantile( data, {
    'accessor': getValue
    'a': -10,
    'b': 10
});
// returns [ -10, -6, -2, 0, 2, 6, 10 ]

To deepset an object array, provide a key path and, optionally, a key path separator.

var data = [
    {'x':[0,0]},
    {'x':[1,0.2]},
    {'x':[2,0.4]},
    {'x':[3,0.6]},
    {'x':[4,0.8]},
    {'x':[5,1]}
];
 
var out = quantile( data, {
    'path': 'x/1',
    'sep': '/',
    'a': -10,
    'b': 10
});
/*
    [
        {'x':[0,-10]},
        {'x':[1,-6]},
        {'x':[2,-2]},
        {'x':[3,2]},
        {'x':[4,6]},
        {'x':[5,10]}
    ]
*/
 
var bool = ( data === out );
// returns true

By default, when provided a typed array or matrix, the output data structure is float64 in order to preserve precision. To specify a different data type, set the dtype option (see matrix for a list of acceptable data types).

var x, out;
 
= new Float32Array( [0,0.2,0.4,0.6,0.8,1] );
 
out = quantile( x, {
    'dtype': 'int32',
    'a': -10,
    'b': 10
});
// returns Int32Array( [-10,-6,-2,2,6,10] )
 
// Works for plain arrays, as well...
out = quantile( [0,0.2,0.4,0.6,0.8,1], {
    'dtype': 'int32',
    'a': -10,
    'b': 10
});
// returns Int32Array( [-10,-6,-2,2,6,10] )

By default, the function returns a new data structure. To mutate the input data structure (e.g., when input values can be discarded or when optimizing memory usage), set the copy option to false.

var bool,
    mat,
    out,
    x,
    i;
 
= [ 0, 0.2, 0.4, 0.6, 0.8, 1 ];
 
out = quantile( x, {
    'copy': false
});
// returns [ 0, 0.2, 0.4, 0.6, 0.8, 1 ]
 
bool = ( x === out );
// returns true
 
= new Float32Array( 6 );
for ( i = 0; i < 6; i++ ) {
    x[ i ] = i / 6 ;
}
mat = matrix( x, [3,2], 'float32' );
/*
    [   0  1/6
      2/6  3/6
      4/5  5/6 ]
*/
 
out = quantile( mat, {
    'copy': false
});
/*
    [   0   1/6
       2/6  3/6
       4/5  5/6 ]
*/
 
bool = ( mat === out );
// returns true

Notes

  • For any p outside the interval [0,1], the the evaluated quantile function is NaN.

    var out;
     
    out = quantile( 1.1 );
    // returns NaN
     
    out = quantile( -0.1 );
    // returns NaN
  • If an element is not a numeric value, the evaluated quantile function is NaN.

    var data, out;
     
    out = quantile( null );
    // returns NaN
     
    out = quantile( true );
    // returns NaN
     
    out = quantile( {'a':'b'} );
    // returns NaN
     
    out = quantile( [ true, null, [] ] );
    // returns [ NaN, NaN, NaN ]
     
    function getValue( d, i ) {
        return d.x;
    }
    data = [
        {'x':true},
        {'x':[]},
        {'x':{}},
        {'x':null}
    ];
     
    out = quantile( data, {
        'accessor': getValue
    });
    // returns [ NaN, NaN, NaN, NaN ]
     
    out = quantile( data, {
        'path': 'x'
    });
    /*
        [
            {'x':NaN},
            {'x':NaN},
            {'x':NaN,
            {'x':NaN}
        ]
    */
  • Be careful when providing a data structure which contains non-numeric elements and specifying an integer output data type, as NaN values are cast to 0.

    var out = quantile( [ true, null, [] ], {
        'dtype': 'int8'
    });
    // returns Int8Array( [0,0,0] );

Examples

var quantile = require( 'distributions-uniform-quantile' ),
    matrix = require( 'dstructs-matrix' );
 
var data,
    mat,
    out,
    tmp,
    i;
 
// Plain arrays...
data = new Array( 10 );
for ( i = 0; i < data.length; i++ ) {
    data[ i ] = ( i + 1 ) / 10;
}
out = quantile( data );
 
// Object arrays (accessors)...
function getValue( d ) {
    return d.x;
}
for ( i = 0; i < data.length; i++ ) {
    data[ i ] = {
        'x': data[ i ]
    };
}
out = quantile( data, {
    'accessor': getValue
});
 
// Deep set arrays...
for ( i = 0; i < data.length; i++ ) {
    data[ i ] = {
        'x': [ i, data[ i ].x ]
    };
}
out = quantile( data, {
    'path': 'x/1',
    'sep': '/'
});
 
// Typed arrays...
data = new Float32Array( 10 );
for ( i = 0; i < data.length; i++ ) {
    data[ i ] = ( i + 1 ) / 10;
}
out = quantile( data );
 
// Matrices...
mat = matrix( data, [5,2], 'float32' );
out = quantile( mat );
 
// Matrices (custom output data type)...
out = quantile( mat, {
    'dtype': 'uint8'
});

To run the example code from the top-level application directory,

$ node ./examples/index.js

Tests

Unit

Unit tests use the Mocha test framework with Chai assertions. To run the tests, execute the following command in the top-level application directory:

$ make test

All new feature development should have corresponding unit tests to validate correct functionality.

Test Coverage

This repository uses Istanbul as its code coverage tool. To generate a test coverage report, execute the following command in the top-level application directory:

$ make test-cov

Istanbul creates a ./reports/coverage directory. To access an HTML version of the report,

$ make view-cov

License

MIT license.

Copyright

Copyright © 2015. The Compute.io Authors.

Dependencies (16)

Dev Dependencies (6)

Package Sidebar

Install

npm i distributions-uniform-quantile

Weekly Downloads

0

Version

0.0.1

License

MIT

Last publish

Collaborators

  • kgryte
  • planeshifter